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Abstract. We discuss a new diagnosis system combining wavelet anal-
ysis techniques and probabilistic classifiers for detecting tramway rollers
defects. A continuous wavelet transform is applied on the vibration signals
measured by specific accelerometers located on the rail. A temporal seg-
mentation of the signals is carried out in order to identify the contribution
of each pair of rollers to the overall vibration signal. The singular values
decomposition (SVD) method is applied to segments of the time-scale rep-
resentation to extract the most significative features. The resulting multi-
class problem is then solved using pairwise classifiers trained on two-class
sub-problems. The efficiency of this approach is successfully illustrated on
several experiments on the tramway.

1 Introduction

Most often, the monitoring of mechanical parts of a transportation system is
based on visual controls performed by experts or technicians. Such tasks are
expensive and time consuming ; moreover the diagnosis is sometimes unreliable.
The use of an automatic monitoring system reduces the maintenance costs and
makes them more efficient. Several works deal with the diagnosis, detection and
classification of defects of a rail [9, 10, 11] or of mechanical systems like roller
bearings [7, 8]. This paper focuses on the monitoring of the rollers of the guiding
system of a new kind of a tramway on tires, the Translohr.

The Translohr, fig. 1(a), has been chosen by several cities (Clermont-Ferrand,
Venice, Padova...). It is equipped with a guiding system consisting of a single
central rail. The tramway used for our experimental tests has 4 axles equipped
on both sides with two pairs of rollers at the front and at the back, fig. 1(b)&(c).
There are therefore 8 pairs of rollers. To limit noise and parasitic vibrations,
the rollers are covered with a composite overlay that ensures better comfort
and silence without squeaks. This overlay can be damaged and worn, fig. 1(d).
The guiding system then becomes quite uncomfortable and the structure of the
rollers themselves is threatened: a renewal of the overlay must be decided.
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Fig. 1: (a) The Translohr on tires. (b) Overview of an axle and of the guiding
system. (c) The guiding system: a pair of rollers. (d) A defected pair of rollers.

In the framework of a project developed and supported by the city of Clermont-
Ferrand (SMTC), LOHR and Signal Development companies, we develop a sys-
tem designed for the automatic monitoring of the state of the overlay of the
rollers. This system uses the measurement of the vibrations1 provoked by a
damaged overlay in the rail. Thanks to a time-scale analysis of the signals com-
bined to learning methods, one hopes to locate the defective pair of rollers and
to identify the nature of the defects at the same time. The state of each pair
of rollers must be determined as precisely as possible: new (no defect), (slightly
or very) worn, with holes (due to the accidental presence of metallic pieces or
stones on the rail)...This last classification task can be performed by using sev-
eral classifiers types. We have compared results from MLP, Knn and RBF. Three
states have been discriminated in the results presented below: ”new”, ”worn”
and ”with holes”, see Section 4.

2 Signal processing

2.1 Data pre-processing

We have recorded several sets of signals for different known configurations (com-
binations of ”new”, ”worn” and ”with holes” rollers on different axles). The
horizontal and vertical vibrations of the rail are measured by three bidirectional
accelerometers when a Translohr passes at normal speed (35 Km/h). The use of
three sensors ensures some redundancy. The measurement system provides us
with six signals (3 horizontal and 3 vertical components). Each acquisition lasts
8 seconds at sampling frequency Fe = 44100Hz. Thus, the available bandwidth
for analysis is roughly within [2Hz-20kHz]. In fact, only the sum of the two

1The measurement system is the propriety of Signal Development SD company.



components (lateral and vertical) is used.
The signal is a priori related to information coming from the 8 pairs of

rollers that generate vibrations altogether, at the same time. However, it is a
reasonable physical assumption to consider that only the closest pair of rollers
to the sensor generates the measured vibrations. Two photoelectric cells around
the sensors provide references in time and position. This information allows us
to locate the passage of each of the 8 pairs of rollers over the sensor within each
signal. Therefore, 8 segments of signal can be identified and labelled CGk, for
k = 1, ..., 8, fig. 2(a).

2.2 Time-scale representation

Thanks to the procedure described in the previous section, we are able to know
to which pair of rollers is related each segment of the signal. Now, we need
to identify the state of the overlay of this pair of rollers. To this aim, a local
frequency information is required. Such a remark naturally leads to use a time-
frequency or a time-scale analysis.

Two major types of defects can be distinguished. The first type corresponds
to structural roller defects that generate vibrations at low frequencies (or large
scales equivalently). The second one generates high frequencies (small scales)
and is characterized by surface defects, fig. 1(d). To get a good frequency reso-
lution both at low and high frequencies, a time-scale analysis is preferable: the
relative precision is constant over the whole range of analyzed frequencies (∆ν/ν
is constant). We used a continuous wavelet transform of the form [2]:

Tx(a, b) =
1√
a

∫ +∞

−∞
x(t)ψ∗(

t− b

a
)dt (1)

where ψ(t) is the wavelet function, a is the scale or dilation parameter (scale
≈ 1/frequency), and b is the time location parameter. A scalogram such as
presented on fig. 2(c) consists of a gray level picture of the energy density function
of the wavelet transform, |Tx(a, b)|2. The wavelet used in this work is the second
derivative of the Gaussian function, known as the Mexican-hat wavelet [2].

Figure 2 shows a typical example of the scalogram of a signal. Some in-
formation are directly visible by eye. Let Frot the rotation frequency of the
rollers. The scalogram is clearly divided into three parts. At the bottom is a
low frequency band, f < Frot, corresponding to the first type of defects (warped
roller, structural deformation...) ; the rotational frequency Frot is represented
by an horizontal dashed line at scale a = 212 corresponding to 10.76Hz (de-
pending on the tramway speed). At the top is a high frequency band f & Fnoise

with Fnoise ' 350 Hz (corresponding to the scale a ' 27), essentially consist-
ing of noise. The medium frequency band corresponds to Frot . f . Fnoise,
f ∈ [10Hz − 350Hz]. This intermediate band is the most informative. One
clearly notices the existence of black peaks, fig. 2(c), look at zone A. Such peaks
can be associated to defects of a size of the order of several millimeters to 10
centimeters on the overlay of a pair of rollers.
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Fig. 2: (a) Whole temporal signal. (b) Zoom on the segment corresponding to
pair of rollers CG1. (c) The time-scale representation (scalogram) of a signal.



3 Feature selection & Classification

In this first study, we will only focus on medium scale defects associated to
the medium frequency band defined above. The time segmentation described
in section 2.1 combined to the frequency segmentation described in previous
section allow us to isolate a rectangular piece of scalogram for each pair of
rollers. Such a piece of scalogram is indeed a matrix of coefficients. Taking all the
wavelet coefficients for classification purpose is clearly impractical. A reduction
of the dimensionality to significantly increase the generalization performance is
necessary. Geometrical features of the observed dark peaks in fig. 2(c) such as
pixel densities, surface of the peaks... are not sufficiently informative to get
an efficient classification. A singular values decomposition (SVD) [3] of the
scalogram yields more appropriate features. Singular values decomposition of
time-frequency Wigner distributions was used for classification in [5, 6]. Let
CWTk the matrix of squared wavelet coefficients associated to CGk. Every
CWTk matrix can be decomposed as:

CWTk = USV t. (2)

where U and V are orthogonal matrices and S = diag(λ1, λ2, ..., λp), λ1 ≥ λ2 ≥
... ≥ λp ≥ 0.

Due to the limited number of training data, the 3-class (”new”, ”worn”,
”with holes”) classification problem has been decomposed into a set of 3 simpler
2-class problems following the approach described in [4]. Each network is trained
using the data of two classes only to obtain a posterior probability for the class
decision (”new” vs ”worn”, ”new” vs ”with holes”, ”worn” vs ”with holes”). The
three resulting probabilistic pairwise classifiers Pij are combined afterwards in
order to obtain posterior probabilities P (Ci|X = x) for the final class decision:

P (Ci|X = x) =
1∑K

j=1,j 6=i
1

Pij
− (K − 2)

(3)

where K = 3 in the present case and Pij is the probability that x is assigned to
class Ci given that it belongs to Ci ∪ Cj .

4 Results of defects classification

80% of the vectors of our data basis were used for training. The 20% remaining
vectors were kept aside for validation purpose. Several classification techniques
were compared : k-nearest neighbours (Knn), neural network classifiers (MLP),
and radial basis function networks (RBF). The two-class classification using RBF
gave the best results. The application to our test bases gave very convincing
results. The data for test consists of 3 sets of 16 vectors each (”new”, ”worn”,
”with holes”). Figure 3 shows the results of the two-class network classifiers.
The outputs are plotted as a function of the index of vectors: the first 16 belong
to one class and the other 16 to another one. The distinctions ”new” vs ”worn”
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Fig. 3: RBF networks outputs : (a) new vs holes ; (b) new vs worn. (c) holes vs
worn

and ”new” vs ”with holes” are perfectly efficient. The ”worn” vs ”with holes”
classification is quite efficient as well with only 2 outliers over 32 tested vectors.
Finally, the combination of the three pairwise probabilistic classifiers using eq. 3
leads to the following recognition rates: 100% for ”new”, 76% for ”worn”, and
83% for ”with holes”. We expect an increase of these performances thanks to a
more important data basis and the use of SVM which is the subject of ongoing
work. We also study the extension of this method to a larger number of classes
with different levels of wear.
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de Rail par SVM. Congrès International IEEE Signaux, Circuits et Systemes SCS’04,
Monastir, Tunisie, 18-21 mars 2004.


