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On non scale invariant
Infinitely divisible cascades

Pierre Chainais, Rudolf Riedi and Patrice Abry

Abstract— Multiplicative processes, multifractals and more
recently also infinitely divisible cascades have seen inased
popularity in a host of applications requiring versatile multiscale
models, ranging from hydrodynamic turbulence to computer ret-
work traffic, from image processing to economics. The method
ologies prevalent as of today rely to a large extent on iterate
schemes used to produce infinite detail and repetitive struare
across scales. While appealing due to their simplicity, trse
constructions have limited applicability as they lead by déault

to powerlaw progression of moments through scales, to non-

stationary increments and often to inherent log-periodic saling
which favors an exponential set of scales. This article stues
and develops on a wide class affinitely divisible cascade¢IDC),
thereby establishing the first reported cases of controllale scaling
of moments in non-powerlaw form. Embedded in the framework
of IDC these processes exhibit stationary increments and ating
over a continuous range of scales. Criteria for convergence
further statistical properties as well as MATLAB routines are
provided.

Index Terms—fractional Brownian motion, infinitely divisible
cascades, multifractal, multiplicative cascades, multaling, ran-
dom walk, turbulence.

I. INTRODUCTION

through

E|6, X (1)|7 = Cy(7)7¢@  asT — 0,

1)

whereC,(7) is assumed either to be constant, to be bounded
between positive constants, or to be a more general furiction
depending on the context. For instance, statisticallysietflar
processes such as fractional Brownian moti(¢) [2] with
Hurst exponenfd fit into this framework with{(¢) = ¢H and

C, constant equal td[| By (1)|7]. The Binomial multiplica-
tive cascades, among others, fit with a strictly convex fiomct
¢(¢) and bounded’,(-). The multifractal formalism connects
the scaling exponent§q) via the Legendre transform to the
local degree of regularity of the path of the process.

In real world applications, the notion af(¢) in (1) is of
limited use, since one is able to observe only a limited range
of scales from actual data. For clarity, when scaling laves ar
meant to hold for scales or lagg,i, < 7 < Tmax We use the
term multiscaling Note that for the multifractal formalism to
apply rigorously one needs scaling as in (1) down to infipitel
small scales.

In addition, the functional form of a powerlaw in (1) can
be limiting in applications, such as in networking [3], [4].

Scaling behavior has become a welcome parsimoniofise framework of theinfinitely divisible cascadegIDC),
description of complexity in a host of fields including natur introduced first as a concept of analysis in fluid turbuleses (
phenomena such as turbulence in hydrodynamics, human h¢giit[5]-[9]), answers to both short-comings. By integnatihe
rhythm in biology, spatial repartition of faults in geologs contribution of all scales in a range of interest, IDC-asiy
well as mankind activities such as traffic in computer neksor allows for more flexible scaling and thus better fitting ofadat
and financial markets. The multifractal formalism (see [df f by setting:
an extensive set of original references) has received much
attention as one of the most popular framework to describle an 19X (t)|* = Cg exp[=¢(@)n(7)], fOr Tin <7 < Timax,
analyze signals and processes that exhibit scaling piepgert (@)

covering and connecting both local scaling and global sgaliWhere the functionn(r) is assumed monotonous and can
in terms of sample moments. be interpreted as thdepthof the cascade. Such a behavior

The termscale invariance e.g., refers in various fields 'S @nalysed in terms of aascading mechanisthrough the

to a relation between the absolute moments of incremen?{‘%‘aleS from7inaq 10 Timin. I\/I_oreo_ver, the IDC framewqu
5, X(1) = X(t +7) — X(t) of a processY and thelag 7 2) encompasses the scale invariance (1) as the special case
in form of a power law. More precisely, scale invariance jg(r) = —logT.

: ; . Besides the broader context of the IDC framework in terms
then described by a set of multifractal exponefiig) defined
y P ) of scaling-laws and -ranges, a further difference to nmaltifal

analysis may be noted in its spirit. Multifractal theory sise
notions such as the scaling exponefitg) which tend to be
defined as to exist a priori and not to put any condition on
the analyzed process (compare footnote 1) and it is conderne
with inferring fine grained, local properties of processed a

Onsignals from global scaling in various settings (see [1]dar
extensive set of original references).
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IMultifractal analysis usually works with a definition whiapplies to any
process and which reads daninf,_.qlog, Cq(1) = 0.
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The framework of IDC, on the other hand, formulateprescribed departures from power law behaviors in the sense
a condition on the process or time series at hand, naméhatn(7) # —log7 in (2).
separabilityof IE|§, X (¢)|? as a function of scale and order In Section Il, we recall the basic definition and properties
according to (2). This functional form may or may not hold foof the infinitely divisible cascading nois¢DC-noise) and
a process and therefore provides a true property of a procpsit out its interesting degrees of freedom. Doing so, we
beyond a statistical description of the kind of scale irsage provide straight-forward extensions of recent convergenc
Q). results [26]. In Sections Il and IV we introduce thdinitely
Note that both multifractal analysis and IDC scaling cadivisible cascading motiofiDC-motion) and their associated
be formulated in terms of wavelet coefficients by replacingandom walk(IDC-random walk) and study their statistical
increments(1) by wavelet coefficienfs (see [1], [3], [8], properties. For both the IDC motion and random walk, we
[10]-[13] and references therein for original developrsentput the emphasis on pinpointing their departures from power
applications and surveys). law behaviors as accurately as possible. In Section V we
While analysis tools for multiscaling processes and irprovide numerical simulations of non scale invariant psses;
finitely divisible cascades have been widely developed (sie Section VI we give details on practical algorithms for
[3], [51-[9]), only few recent works proposed actual modelfDC processes simulation. Conclusions and perspectives ar
and tools for synthesis of processes with prescribed and coeported in Section VII. For the sake of flow, we postpone
trollable IDC scaling. Since thieinomial cascadepopularized mathematical complements and proofs to the Appendices |
by Mandelbrot [14]-[16], multiplicative cascades haveaw to V. Practical properties of these processes relevant for
played a central role as a paradigm of multifractals, legdirapplications are detailed in a companion paper [27].
to advances on random self-similar measures of considerabl
generality. II. INFINITELY DIvVISIBLE CASCADING NOISE
_ Shortly after the turn of the millenn_ium the time seemeﬂ' Background
ripe for IDC processes. In a very original approach, Schmitt
& Marsan [17] describe scale invariant infinitely divisible
cascades by a stochastic equation resulting from the déR
sification of a discrete multiplicative cascade. Their work

gives decisive indications towards the unification betweé:r"ilscadGEls introduced by Mandelbrot [14], [15] may be viewed

Mandelbrot’s approach and the infinitely divisible cascad&® the archetype Of_ rr_1u|t|fract<'_;1l ran_dom measures. Among the
approach; however, it does not cover scaling properties ﬁﬁveral ways of defining the binomial cascade, the most usefu

details. Barral & Mandelbrot [18] introduced tiultifractal in"our context is via the iterative products

The distinguishing and defining common feature of cascades
nsists in an underlying multiplicative construction akhi
iterated across scales. The well knoeanonical binomial

Products of Cylindrical Pulse@MPCP) also calledompound Bn(t) = H Wik
Poisson cascades (CPG@nd provided their rigorous multi- {(G,k)1<<ntel; 1}
fractal description. While cast as multiplicative cascade ®3)
[18], the CPC show infinitely divisible power law scaling and = fn1(t) {k tl;[ }an’“'
: n,k

are but a special case of IDC processes mentioned later. By
prescribing the correlation function of the incremefts( of Here, I; ;. stands for the nested dyadic interv@l@ =7, (k +
a random walk, Bacry, Delour & Muzy [19], [20] introduced1)2~7) and W, ; denotes i.i.d. positive random variables of
the pioneeringMultifractal Random WalkMRW) that later mean onelEW, ;, = 1). By construction3, is constant over
turned out to be a particular case of a more general framewesdch intervall,, .
[21], [22] (see below). Finally, Bacry & Muzy [21], [23] An equivalent construction of the binomial cascade empha-
introducedlog-infinitely divisible multifractal processeand sizes the measure-theoretic aspect by considering3thas
provided strong results on convergence and scaling behavigensities and studying their distribution functiofs,(t) =
extending some of the results for compound Poisson cascagloésn(s)ds. As positive martingales, these converge weakly
[18]. to a limiting distributionX [16], [28], which exhibits scaling
Inspired by earlier ideas of Mandelbrot [24] but indeperof the form of (1) with bounded’, (). Attractive from a signal
dently from the abovenfinitely Divisible Cascading processesprocessing point of view is the iterative aspect of (3) which
were introduced in [22], [25], with the main goal to provideallows for fast, tree-based synthesis algorithms as the one
processes with controllable non-powerlaw scaling, esfigci used for the so-called MWM model [29]. This underlying tree
in the framework of CPC with their associated random walkstructure is inherited from the nested arrangement oflfhe
This article follows up with rigorous results and practicalvhich may be represented by the poiité + 1/2)277,277)
algorithms on Compound Poisson and log-normal cascadgshe (time,scale)-plane (see figure 1, left).
as special cases of IDC processes. Doing so, we introduce thelowever, such cascades have two major drawbacks. They
non scale invariantnfinitely Divisible Cascading (IDC) noise, are not strictly stationarysince the construction is not time-
motion and random walk. These continuous-time continuoushift invariant; this may result in “blocking effects”. Ruer,
scale processes possess stationary increments and exbipitonstruction the scaling of moments is log-periodic and

2 Lo . favors, in particular, the scale ratio equal2o
However, as far as non scale invariant objects are conceorexrlhas to Followi id f Mandelbrot 24
take care. Indeed, the fact that scale invariance exporféhiso not depend ollowing a more recent idea of Mandelbrot [24] one

on the wavelet base is deeply related to the scale invariahtiee process. may overcome both drawbacks by replacing the rigid, nested
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Fig. 1. Comparison between the “time-scale” construction of multplicative cascades. Left:Nested geometry behind the binomial casca@enter:

Stationary discrete geometry behind the Compound PoissmtadeRight: Stationary continuous geometry behind the Infinitely Dblis Cascade. The
shaded cones indicate the regions that determine the vélie @ascade at time

arrangement of multiplierd¥; , of the binomial cascade 1
by a planar Marked Poisson Point Proc€gs;,r;, W;)}:;

this lead to theMultifractal Product of Cylindrical Pulses

(MPCP), also calledcompound Poisson cascad@3PC) (see

figure 1, center). More precisely, introducing the céh&) =

{{,r")y:r <" <1Lt—r"/2<t <t+1'/2} the MPCP (or

CPC) cascade reads as:

3 Q(t)
r(t) = Wi, ~(t) = ~ . 4
Q ( ) (ti ,T";)Hecr(t) Q ( ) ]E[Q"' (t)] ( ) rr—— X/ N/

0 S t

Note that the binomial cascade uses similarly all multiglie

W;.. such that(k+1/2)277,277) belong to some cone above
time t. Fig. 2. The dependence betwee&p,(t) and Q-(s), in particular their

correlation, stems entirely from the measure of the intdime of two cones
To obtain simple iterative scaling laws for the MPCP (0¢, () and¢, (s) Y

CPC) one ensures that each “exponential frequency band”

of scales betweef—7~! and2~/ contributes on the average

the same number of multipliers 19, (). This results in an B. Infinitely Divisible Cascades: basic notions

expected number of Poisson points@p(t) proportional to  We recall now the definition of thenfinitely Divisible

—logr, just as for binomial cascade. Powerlaws in the forr@ascading noisg21]-[23], [25] which generalizes the CPC

of (1) with boundedC,(-) are then recovered, together with(4) of Barral & Mandelbrot [18] as well as ideas of Schmitt

the powerful multifractal formalism [18]. & Marsan [17]. Note that IDC are closely related to the
Noting that compound Poisson distributions are infinitelyévy stable chaos of Fan [30]. Note also that IDC enter the

divisible, it seems only too natural to generalize the conmub framework of the T-martingales of Kahane [31].

Poisson cascades (CPC) to thndinitely divisible cascades To this end letG be aninfinitely divisible distribution(see

(IDC) by generalizing (4) to the form Appendix I) with moment generating function

Qr(t) .= exp M (C,(t)) (5) é(‘l) = exp[—p(q)] = /GXP[qI]dG(x)- (6)

Let dm(t,r) = g(r)dtdr a positive measure on the time-
with a continuous infinitely divisible random measurgcgle half-plan@* := RxR*. Let M denote an infinitely di-
dM(t,r) (see Section II-B and Appendix I). This was done iisible, independently scattered random measure disxtiy
previous works [21]-[23] which dealt with the scale invatia 7, endowing the time-scale half-plafe” and associated to its

case yielding power law scaling. so-called control measurn(t, r) (see (66) in Appendix I1).
In this paper we are mainly interested in scalings th#t particular, we have for any Borel sé&t

involve departures from exact power lawés we observed

: . ) E M(E)]] = — £

in CPC case, powerlaws go hand in hand with an average [exp [gM(E)]] = exp[=p(g)m(€)] 7

number of multipliers in the coné, proportional to— logr. = exp [_p(q) / dm(t,r)} . (7)

This suggests to abandon the idea of statistically idelntica £

contributions from exponential frequency bands in order fthe specific choice of a time-invariantontrol measure
find non power law scaling; as we will see, this comes at then(t,r) = g(r)dtdr is not essential to a valid definition but
cost of simple iterative arguments. is added to ensure stationarity ©f..
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Finally, acone of influenc€,.(¢) is defined for every € R Lemma 1: Let Q. be an IDC noise. Then,

as (see figure 1) E[QY] = exp [-¢(q) m(C,)]

1

_ _ _ = exp [—SO(Q) / ug(u) dU] :
Choosing the large scale in the code(t) equal to1l is r
arbitrary and amounts to a simple choice of time and scaleThe fact that the distributiods underlying the IDC noise
units. Furthermore, the symmetry of the cone’s shape iaflidgh Definition 1 is infinitely divisible is key to ensure the
a causal as well as an anticipating component. Scalingtsesgleparation of the dependence of the momé&{t3%] on order
presented below extend without restriction to a purely ahus; and resolutiornr (12). Power law behaviors will be recovered
version such a€,.(t) = {(¢,r') : r <7’ < 1,t—7' <¢ <t}. forthescale invariantcase defined by [18], [21]-[23]

Cr(t) :={(',r"):r <r' <1Lt—7r"/2<t <t+71"/2}. (8) (12)

Definition 1: An Infinitely Divisible Cascading nois@gDC el for0<r <1
noise) is a family of processeg,.(t) parameterized by of m(C-(t)) = { 0 c-logr for 1 < "= (13)
the form (see Figure 3) =r
0.6) = exp M(C(1)) or equivalently
: Elexp M (C,.())] 9) dm(t.r) = % drdt for0<r<1, (14)
= explp(1)m(C, (1))] exp M(C,(1). mit,r) =3 7 for1<r
In the light of the Compound Poisson Cascades of the
previous section, the IDC-noise can be interpreted as a-“cdrfl- (12) becomes
tirjuously iterative" .muItipIication (compare figute_ll (ﬂ)elﬁ E[Q, (1)1 = ree(a) (15)
(right)). An immediate consequence of the definition is that
Q. is a positive stationary random process with: Interestingly, the correlations of IDC noises —and in fdtt a

EO. — 1 10 finite dimensional distributions [23]— are entirely detémed
Qr =1 (10) by the geometry of the cascade in terms of the intersection of

The key property (7) reminds of (2) in how it separate&ones in the time scale plane (see Figure 2):

the dependence of the moment ordgrit lies at the origin ~ Lemma 2:

of all scaling properties obtained in the sequel. Indeed, th

distributionG controls the structure function throughwhile E[Q:(1)Qr(s)] = exp[-o(2)m(Cr(s) N Cr(1))] . (16)
the control measure: and the shape of the codg(t) set the
speed of the cascade. ChoosingC,.) proportional to— log r
will lead to powerlaws. Aiming at non-powerlaw behaviors,]E[QT(t)Qr(S)] =
one may explore these degrees of freedom offered by thq

In the scale invariant case of (13), Eq. (16) becomes

|t — s |°(2) gmce@t=sl=1) for r < |t —s| <1, (17)

cone and the control measure. However, one should keep i
1 forl<|t—s|.

mind that a change in the choice @f.(¢, ) can be expressed
equivalently by an appropriate change in the shape of the c

Co(t) %he equation above approximately behaves as a powerlaw for

small values ofr < |t — s| < 1, while the finite scale effects
are rendered by the exponential term for s| ~ 1. Note that
C. Infinitely Divisible Cascading Noise: first properties an exact powerlaw behavidor all » < [t — s| < 1 may be
recoveredn eq. (17) by adding a Dirac distributiam (r — 1)

A direct consequence of the infinite divisibility of the
! au ! VIS to g(r) = ¢/r? in the definition ofdm(t,r). Indeed, we have

random measureé/ and eq. (9) is that),(¢) has a log-
infinitely divisible distribution, that islog @, (¢) has an in-
finitely divisible distribution. Also, the IDC noise adheréo m(Cr(s) N Cr(t)) = —clog|t — s|. (18)
a form of exact scaling, however, not in the sense of (1)
with respect to the index. It is convenient to set

]E[eqx])

b"l‘his corresponds to the choice made by Bacry & Muzy [21]
to build exactlyscale invariant measures.

o(q) = p(a) — apl(1) = — log <

]?ée;q (11) D. IDC noise: Examples
= —log < 127] > , Infinitely divisible distributionsG that may be used in this
(E[Z])7 .  this
construction are often among well known common distribu
whenever defined, wher& = exp[X] and whereX is tions [32]. Most of these models have already been proposed

distributed according to the infinitely divisible la@. Note for the modelling of intermittency in the context of turbnée
that o(1) = 0 by definition and thatp(q) < 0 for all ¢ > 1 in fluid mechanics [9]. Note that all expressions ofq) =
for which it is defined. To see this recall the well-known facbt(q) — gp(1) are constrained by the normalization@f. that
that characteristic functions are log-convex. Consedyents imposesp(1) = 0. Prominent examples include:

concave and so must kedue to (11). Since(0) = ¢(1) =0 Example 1 (Normal): The underlying distributionG of
the claim follows. the random measur&/ is normal, i.e.,N'(u, 0?) [33]. Then,
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2
p(q) = —pq — %q{ so thate(q) = p(q) — qp(1) depends E- Additional comments
only on one parameter: 1) Self-similar processesfrom the point of view of the
analysis of scaling, self-similar processes can be seen as a
(19) particular case of multiscaling processes (cf. (1)). Havev
we emphasize that self-similar processes cannot be directl

) . . built as IDC noises. Self-similarity would correspond to a
Example 2 (Stable): The underlying distributiorG of the linear dependence 9§(g) on ¢ of the form p(q) — ag. It

ran(_jom measura{ is stable, i.e.5(c, 0, 4, B) [34]. Such a corresponds t6: = §, andy(q) = 0 which describes a trivial

choice would correspond to the model of turbulence proposéd . .

. : . . ~“cascade that yields a constant IDC noiggt) = 1. There is

in [35]. Due to the heavy tails af/, normalizing the associate. ST
. : . - ; |]ndeed no cascade of multipliers in this case.

IDC noise (9) is only possible within a special range o

parameter values. Indeed, choosing the tail exporent

1 and the skewness parametér= —1 then the random

variable X with law G is almost surely smaller than the

position parameter, and the Laplace transforii[exp[¢X]]

is meaningful forg > 0 [34, Prop 1.2.12]. One findg(q) =

—pg—o®|q|* (14 psign(q) tan(75*)) with 0 < o < 2 (a # 1)

andg = —1, so that

o(q) = % q(1 —q).

2) On the notions ofesolutionr andscaler: we draw the
attention of the reader onto potential confusions on the tru
nature of the parameter entering the definition of an IDC
noise,. Considering formal analogies between equations (2)
and (12) for instancey seems to play a role equivalent to
7 and therefore can be considered ascale However, it
should better be analysed asparameter of resolution@,
is the intermediate stage of a construction that evolvel wit
parameten- whereasr is the scale over which variations of
Q. (t) may be analysed.

¢(q) =0%(q¢—q") (1 - tan(%)) for ¢ > 0. (20)

Example 3 (Gamma): The underlying distributionG of
the random measurd/ is Gamma [32], [36]. Setting its IIl. | NFINITELY DIVISIBLE CASCADING MOTION
parameters as > 0 andj > 0, we findp(q) = alog(1—¢q/5)

: . While Section II-A lays the basis for continuous-scale or
which yields

infinitely divisible multiplication, this section concesnthe
B—gq B—1 limiting behavior of the cascading nois@,(t) asr — 0
¢(q) = alog <—) —aqlog <—) - (21)  which makes it necessary to introduce its distribution fiomc
s g ' ma 7 !
or primitive A.(t) = [, Q.(s)ds as well as the scaling
Example 4 (Compound Poisson).Compound  Poisson behavior of the limiting procesd of A, asr — 0. Despite
Cascades (CPC) originally proposed in [18], [24] (see al$Reir appearing rather formal and mathematical, the questi
[37]) were set as a special class of IDC noise in Section lbf the behavior ofQ, and A, asr — 0 result crucial in
A. Since the multipliers{W;}; are i.i.d. positive random practice. Indeed, numerical simulations result efficiend a
variables independent of the point proce§s,r;); (See interesting in case of convergence only. Sections Ill-A and
(4)), the underlying distributiorG of the random measure||I-B deal with these problems of convergence and define the
dM(t,r) = 324 (ti.ri)edrxar 108[Wi] is here the compound infinitely divisible cascading motion. Then section Ill-@tes
Poisson distribution associated with the common distidout our principal results on the scaling behaviorafThese results
F of the log[IV;]. The Laplace transform of" simplifies are discussed in section 1lI-D and two non scale invariant
to F(¢q) = IE[WY]; the compound distribution off" is examples are given in section III-E.
given by G(q) = exp[A\(F(¢) — 1)] where X stands for the
expected number of Poisson points. Since we can absorky. Definition (almost sure convergence)
into the control measure:, we may assume = 1 and set

(g) = 1 — EW4 and The IDC noise inherits a powerful martingale property di-
pPq) =1-=

rectly through the underlying infinitely divisible consttion.

Martingale techniques have traditionally been used tobesta
(22) . .

lish weak convergence of cascades ever since the celebrated

Alternatively, an explicit computation of (12) confirms ghi Work on T-martingales by Kahane & Peyriere [16], [28]. For
form of ¢ up to a constant which can be absorbed into tf@nvenience set for < s < 1:

control measuren. Q7 (t) = exp [p(1)m(Cr()\Cs (1)) exp [M (C.-(£)\Cs (1))]
(24)

p(q) =1 - E[WI] —q(1 - E[W]).

Example 5 (Pure Poisson):The well-known She-Levéque and note
m_or:jel [38],P[3_9] in tr:f figgd pf turtflyrl](_ence prcl;posesl_a s(;:ali_nﬁ Q- (1) = Q(1) - Q4(1), (25)
with pure Poisson distributions. This can be realized wit s .
the simplest compound Poisson cascade whé&rereduces where Q) (t) f”m.d QS(?) are independent, and both of mean
to constanti?y with Dirac distribution ' and an underlying L. _Inde_ed, this is a simple consequence of (7), (9.) an_xMof
pure Poisson distributio of the random measurel. Noting being independently scattered. Denoting By the filtration
E[W] — W, (22) becomes induced by the proces9;(-) it follows, still for » < s < 1,
R that
elq) = (1= Wg) —q(1 - Wo). (23) E[Q.(1)|F] = E[Q:1)] Qs(t) =Qs(t). (26)

A
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Fig. 3. Sample of a realization @ (¢) (left), A(¢t) (middle) andVz (¢) (right).

Thus,{Q.(t)}»>o forms a continuously indexed martingaleSince@,. > 0, all A,. and A are non-decreasing and have limits
for eacht. Furthermore, it is left-continuous, meaning tharom the left and right; thusA can be extended to all real
Qr(s) — Qs(t) asr T s sincen,«,C.(t) = C4(t) due to by making it continuous from the left. O
(8). Thus,Q,,,(t) is a right-continuous martingale, where )
we are interested in the limié — oo; this corresponds to  The increment process A, (t) of A,
the traditional setting of the martingale convergence tbeo T
which we recast here according to our setting. 0: A (t) = A (t+ 1) — Ar(t) = Q-(s)ds,  (30)

Lemma 3: An infinitely divisible cascading noise t
{Q-(t)}r>0 forms a positive, left-continuous martingaleinherits full stationarity fromQ,. Recall that stationarity of
Thus, it converges almost surely ag 0. Q essentially roots in the time invariance of both the control

measuren and the shape of the coide.

Invoking the Law of Large Numbers it is then easy to show
that Q. (¢t) converges almost surely and for almost alto .
zero in many cases of interestich as the scale invariantB- Convergence ir?

cascades. IndeedE[log @.(t)] is strictly negative due to  while almost sure convergence is convenient to ensure a
Jensen’s inequality, except in trivial cases. In rare [ace general definition, one requires the existence of moments to
the noise will diverge to infinity (see Figure 3) keeping OBtudy scaling behavior. In addition, nothing assures ariprio
average a reasonable total mass when interpreted as aydengiht 4 in (29) does not degenerate to zero itself. However,
Motivated by this degeneracy of the limit of. (see lemma 3) convergence inc? for some¢ > 1 allows to conclude
and by analogy with the binomial cascades [14] and the thqu{A(t)] = ¢ from (28) and implies the non-degeneracy of
of T-Martingales [28] we introduce thénfinitely Divisible 4. Upto our knowledge, there is no general result available
Cascading Motiorfrom the distribution function of the noise:for 4 > 2 and only1 < ¢ < 2 will be considered here. In the
t scale invariant case, finer results for finiteness of momehts
Ar(t) =/ Qr(s)ds. (27) positive oreders can be found in [18], [21], [23].
0 The most simple such convergence criterion is in terms of
a second order analysis and follows from standard facts on
¢ £2-bounded martingales.
E[A: ()] = /0 E[Q(s)] ds = t. (28) " proposition 1: An IDC Motion 4, converges inc2 if and

The following lemma permits to properly define the Iimiting)(ﬁm>|y0If there exists some finite constakit such that for all

process obtained in the limit — 0.

Lemma 4: Let Q,.(t) denote an IDC-noise. There exists a s [
cadlag (continuous from the right, limits from the left) pess EA(t)" = /0 /0 exp {=p(2)m (C;(u) N Cr(v))} dudv
A(-) with stationary increments such that almost surely <K (31)

Note that

A(t) = lim A, (¢), (29) i L . .
r—0 When this condition is verified4(¢) is non-degenerate and

for all rational ¢ simultaneously. This procesd is called E[A(t)] =t.
Infinitely Divisible Cascading MotiorfIDC-Motion).

In the scale invariant case (13), explicit computation s¥ad
Proof the criterion (31) equivalent tap(2) +1 > 0 (see [18], [23]).
Since conditional expectations commute with integralRecall thatp(2) is always negative —see (11). It is an easy
{A,(t)}, forms for everyt a positive, left-continuous mar- exercise to verify this claim by explicit computation foreth
tingale with respect to the filtration induced kY, (-). It compound Poisson cascades with multipliBfsof mean one
converges, thus, almost surely for all rationaimultaneously. where—¢(2) is simply the variance of the multipliers.
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Going into more mathematical details, a more generalLemma 5: Let0 < r» < b < 1. Then4® is independent
criterion is obtained by extending a theorem by Barral [26f @, and
Thm 6] as follows: ¢

Proposition 2: Let 1 < ¢ < 2. Fix t > 0. Assume that A, (t) :/ Qu(5)Q4(s)ds (35)
there exists an integet, > 2 such that 0

t
S
b [ @[l (5)]. (36)
—n(1-1/q) i 0 b
D kg (BIQL L 0]) T = N
n>0 ° Iterating this idea we set far < b,
k-9 expl—m(C,p—n1) - <oo. (32 . t
;) 0 p[=m(Cyzn-1) - p(q)/d] (32) A (1) ::i/ o (S)ds:/ O (47 )ds
"= " b Jo 0
Then, A, (t) converges almost surely and i£f. _ /t Q(% (s)ds. (37)
0 T
Proof Clearly, A is again a cascading motion. Let(™ denote

First, one needs to extend, in fact, lemma 3 of [26] frofa control measure associated @gn)n(s). Then, by (37),
CPC to arbitrary IDC. This is done by using the auxiliar);n(n) T/b

_ b (1n H
IDC cascade induced byM'(t,r) = p - dM(t,r) which ggT/b" (£)) = m(C;" (b"t)) where in analogy(:? (25) we
is obtained by rescaling the underlying measite of the S?:)CT (8) = Cr(s)\Con(5). As a consequencem™ (¢, r) =
original IDC by the constanp. For a CPC, this amounts to? (r)dtdr with
replacing the positive multipliers/” by W as done in [26]. g™ (r) :== b*g(b"r) - i) (38)
Second, one verifies that the assumptions of [26, Thm. 6(ii)] ) o ) .
hold by exploiting the time-invariance of the cones usecbheﬂaneedv simple X substitution  yieldsm(C" (0)) =
& Jp agla)da = [, bra'b"g(b"a’)da’ = m™(C,./n(0))

which confirms (38). We may understand!™ as a
zoom into the small scale details of the construction of
A,. Indeed, in the scale invariant casg() = c/r?),
we have g™ = g, thus Q" (") ¥ Q,/.(-) and
AM(8) = [ QY. (bns)ds " A (1),

If the integrand@, in (35) were constant over the interval
[0,¢] we could pull it out of the integral and a scaling law

Corollary 1: Let 1 < g < 2. A sufficient condition for
convergence ofl,(t) in L7 is

limsup ~m(Cynr) < L log(1/k,)  (33)

n—oo M ©(q)

for some integetk, > 2 (recall that p(q) < 0). In the scale

invariant case ofn/(C,) = —clog(r) this becomes of moments would immediately follow. A measure for the
variation of the integrand which will prove useful is the
(g=1) +eplq) > 0. (34) following (see Appendix IlI):
Such criteria have been obtained in [23] for scale-invdrian E supg< <y ng”(s)q _ Z:,*l(o)q

IDC, and in [26] for CPC. As will follow from the scaling Al()"q) (t) := T

properties of A, they are quasi tight for certain IDC (see E[Qg.(0)1]

corollary 3). Thus, our main result which is established in the Ap-
pendix Il reads as follows (see also Appendix IV for a direct
derivation forq = 2 in a specific case).

C. Scaling properties of an IDC-Motion Theorem 1:

This section outlines our main theoretical results whichiX ¢ >0, b € (0,1), p(-) anddm = g(r)dtdr. _
characterize the scaling propertiesnoin scale invariantDC- (Mome_nt condlthr_l) Assume that, converges Ince.
Motions. Note that currently existing results cover thelsca (Variational condition) AS(‘;Q;;Jme there exists> 0 such that
invariant case only [21]-[23]. For sake of a fluid reading th Apq(t) < Cyqt” forall n e IN
proofs have been postponed to Appendix Ill. Only some key andall0 <t < L

(39)

points are given in this section. (Speed condition) Assume tha(™ converges.
Our approach exploits the rescaling property of IDcd hen there exist constants, andC, such that for any < 1
?nsp.ire(_j b)_/ the scale invariant case for whigh" (¢) is equal C,t7exp [—p(q) m(Cy)] <
in distributior? to @,/ (t/b") -whereb < 1 andr < b". We EA(1) (40)
start by making this precise. The recursion (25) between the ()_
Q" translates into a recursion between distribution funation < CqtTexp [—p(q)m(Ct)] -
set AY (¢1/b) == (1/b tQﬁi s)ds. Simple plug and play
yie|dsr:/b( /) (170) Jo @x() We emphasize that such a scaling behavior permits for the

first time to observe controlled departures from the stashdar

3Notably, this property in distribution is lost in thexactpower law scaling POWEr law behavior over a continuogs range of Scalles- I_:gayin
case of (18) studied in [21], [23] where a different approachsed. with the form ofm(C;), one may obtain a variety of situations.
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This is illustrated in sections IlI-E and V. Moreover, the Now remember that, inspired by previous works [3], [5], we
stationarity of increments has been maintained. Note thet s were a priori searching for non power law scaling of the form
anon scale invarianapproach implies some specific technicalxp[—((¢)n(7)] as in (2). Rather, through our approach we
difficulties. Clearly, the assumptions simplify drastlgah the are naturally led to a mixture of a power law and a non power
scale invariant case singé™ = ¢ for all n, sinceA does not law behavior of the formr? - exp[—¢(q)m(C,)]. This result is
depend om and since (34) holds. inherent to the use of an integral to defiAé). On one hand,

Thespeed conditiosould be relaxed to require that the”)  the exp [—(¢)m(C,)] term is related to the underlying IDC-
are bounded; however, this would entail technical suletteiti Noise. On the other hand, th¢ term is due to the fact that
the proofs. an IDC-Motion is obtained byntegrationof an IDC-Noise.

The variational conditiondisplays a rather technical aspectocally averaged IDC noise. In many applications(),
butis actually satisfied for any normal and certain compoundould be the quantity of interest for modelling: dissipatio
Poisson cascadesccording to the following corollary. in turbulence, packet flows in Internet traffic, numbers of

Corollary 2: Assume thatA, is either a normal IDC transactions in finance...Then a classical analysis dsnisis
motion or a Compound Poisson Cascade witfi1?] < co. studying box averages over varying time lags. Thus, such an
Assume thay(™) converges. Then, the variational conditioranalysis focuses ofi. A/7. In view of equation (40) obtained
Af)”q) (t) < Gy qt¥ of Theorem 1 holds. in Theorem 1 or equivalently in view of (43), we are led to
As a consequence, Theorem 1 can be applied to a wide varieppsider the following process:
of infinitely divisible cascades, including normal cascads oy
well as compound Poisson cascades Vil 9] < co. z Q,(s)ds = ldeT(t) = E(AT(t+7-)—AT(t)), (44)

The moment conditionvas dealt with in proposition 2 and 7 J¢ T T
corollary 1_(for1 <gq< 2). As a partlc_u_lar CONSEQUENCH4t can be read either as a locally averaged IDC-Noise or
of the scaling law we find that the sufficient condition foLg hormalized increments of the IDC-Motion. From previous

convergence irC? of corollary 1 is quasi tight: sections, one has thétft+T 0, (s) scales like:
Corollary 3: Let1 < ¢ < 2. Assume that (40) holds. A Tt

necessary condition for convergenceAf(t) in £? is

B(L [ @) ~ealcame @)

limsuplm(Ctkfnfl) < g1 log(1/k,) (41)
n—oo N ’ v(a) Thus, infinitely divisible cascades provide us with a vélsat
for all integersk, > 2 (recall that p(q) < 0). family of models that allow for a variety of scale dependence
In the scale invariant case ofi(C,) = —clog(r) this Such a behavior is to be compared to (2) which shows that
necessary condition becomes the process: ftt” Q. (s) meets the requirement of separation
of the form exp[—((q)n(r)] between variables and q.
(¢ =1) +cp(g) 20 (42) Comparing to (12) as well, we emphasize again a fundamental
and was observed in [23]. The proof of [23, Lem 3] generaliz&fference betweem and . In (12), the dependence is on
easily to establish corollary 3. while in (45) the dependence is on the scale variabl&his

latter case betrays a scaling phenomena while the former doe

not. This difference is sometimes evoked in turbulence [35]

by making the distinction between tlhare cascade®, here)

We add a few remarks useful to applications (see also [24id thedressedcascaded, A,/ here).

for more details). Let us start by pointing out that in theecas Back to the original ideas of Mandelbrot [14], when he in-

where ¢ actually converges, then its limit is necessarilyroduced conservative cascades for the modeling of dissipa

the fixed point of the transformatiog(r) — b%g(b*r) which in turbulence, one can reag, as the dissipation function as

is nothing but the scale invariant case. Thus, for such casggasured at Kolmogorov lengifi(n then corresponds te),

the cascade will show only some sub-dominant yet visiblghile 1 [7 Q,(s) stands for the aggregated dissipation in

corrections to powerlaws (see examples of section IlI-Elc&  hoxesof scale 7. The scaling behavior of this latter quan-

only boundedness of the tail gf") is required, some further tity has been widely studied in experimental hydrodynamics

flexibility is present. turbulence (see e.g., [40] for a review).

Scaling of increments. The fact thatA(t) has stationary Continuous multiscaling. A key property of these scaling

increments and4(0) = 0 yields the useful scaling laws onpehaviors (40) or (43) is that they hold continuously thioug

the incrementg, A of A: the scales, not only for a particular set of discrete scales.

q q Again, we put the emphasis as well on the fact that the

E[0- A% ~ Gy exp [=p(q)m(Cr)], V7 < 1, (43) construction ofQ, and A enables a full control of the way

where ~’ is used as a short notation for inequalities likehe cascading process develops along scales and not only of

in (40); in practice, it turns out that both sides of the’* the multifractal behavior obtained in the limit— 0. As far

are close to proportional for < 1. Moreover, one expects as applications and real world data modeling are concerned,

that IE[0-A9] ~ 77 for large T > 1. This is in essence awe believe that the control of the entire cascade process is

consequence of the Law of Large Numbers: while for small probably more relevant than that of the asymptotic behavior

the noise is quite correlated, it decorrelates quicklyas 1. ast — 0 only.

D. Discussion of Scaling Laws
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Numerical simulations. In numerical simulations (see sec- Example 7: This example is inspired from consideration
tion V), one has to deal withi,. rather than with the limiting in the analysis of hydrodynamic turbulence [5] where a
processA since the limitr — 0 remains out of reach. dependence in — r—” in place oflogr was proposed to
However, for sufficiently small one has take into account the departures from power law behaviors
El5. AT 0 Cr a c Vr <7< 1 46 obse_rved on empirical d:?\ta. This choice results naturat as i
[6-A7] ~ Cqrt exp [~p(g)m(Cr)], Vr <7 < 1. (46) provides a family of functions indexed by only one parameter
The equation above clearly underlines the different stafus # Which tends to the functioibg r as /5 — 0. Moreover, a
time-lag 7 and resolutionr: r acts as a limitingresolution direct computation of the behavior &A(t)* is possible and
below which scaling properties are not controlled while iS reported in Appendix IV.
stands for thescaleat which the process is analysed. Modifying the scale invariant case, we consider the mea-
Scale invariant case.Consistently, the power law behaviorssuresdm(t, ) = c/r**%dtdr to achieve the proposed scaling.
of the known scale invariant case [21]-[23] are recovered 4§€ case3 > 0 gives rise to a divergence as— 0 so that4,
a corollary of Theorem 1 above: does not converge to a meaningful procéss). Indeed, (33)
Corollary 4: Let A, be an IDC motion with scale invariant Yi€lds nothing since the left-hand side is infinite.

control measure (13). Assume tht converges irc? and that ~ When g < 0, ¢ vanishes identically in the limit. This
A(O)(t) = O(t") ast — 0 for somev > 0. Then is related to the fact thdim,_,o m(C,) is finite. As a con-

b sequence, the limit ofi,. (»r — 0) poses no problem and its
C 7D < BA(t)? < Cptt¢@  fort < 1. (47) multifractal behavior (in the limit — 0) results trivial. Let us
add thatg(™) converges to zero whefi < 0 which simplifies
A further remarkable consequence follows from Kolthe assumptions of Theorem 1 and corollary 2. However, the

mogorov’s criterioA. non power law behavior at scateis controlled by
Corollary 5: Let A, be an IDC motion with scale invariant 18
. . . — T
control measure. Then there exists a continuous versioa of m(C;) =c¢ (51)

such that almost all paths have globablder regularity i for —B

all h < (¢ — 1+ cp(q))/q for all values ofq for which (47) and remains interesting in a wide range of scales 1. This
holds. example is of particular interest and will be extensivelgdis

in Section V devoted to illustrations (see also Appendix. V)

The correction terms to the powerlaw found in these examples

may be subtle, yet they reflect true scaling and cannot be

subsumed by a constant error bound (see Section V). Up to
Since departures from power laws are one of the major g@alr knowledge, these are the first cascades which deviate fro

of the present work, we give here two precise examples of npare powerlaw scaling.

scale invariant measune(C,.) for which we may verify the

assumption of Theorem 1 and corollary 2. IV. INFINITELY DIVISIBLE CASCADING RANDOM WALK
Example 6: Let us consider the following slight deviation

from the scale invariant case:

E. Non scale invariant examples

By construction A is a non-decreasing process and this can
c be seen as a severe limitation for the modeling of real world
dm(t,r) = g(r)dtdr = — dtdr. (48) data. As it was already proposed in the scale invariant case
r? (1 +1/log(d/r)) [21]-[23], following an idea which goes back to Mandelbrot
Note first that the densitieg™ converge to the scale invariant{42] and to theBrownian motion in multifractal timeone
densityc/r2. Second, note that applying (33) leads to the san§@n define a process with stationary increments, continuous
L2-convergence criterium as in the scale invariant case, agégle invariance, prescribed departures from power lawis an

should: prescribed scaling exponents as well as positive and nvegati
(q—1) + cp(q) > 0. (49) fluctuations: thenfinitely Divisible Cascading Random Walk
Vy.

Moreover, it is a sufficient condition forZ?-convergence
for all cascadesA!™. Despite the close approximation by
the scale invariant cascade, this example spots non-pawer

progression of moments since Definition 3. _ _ _
Let A be an IDC Motion, andBy the fractional Brownian

m(C,) = —clogt + clog ( 1+ log(9) ) . (50) motion with Hurst parametefl, By being independent of.
1+ log(d/7) The process (see Figure 3)

. Definition

Vi (t) = Bg(A(t)), teRT, (52)

4Kolmogorov’s criterion (see for example [41]) : X (t) : t € R} is a
stochastic process with values in a complete separabldcnsgiace(S,d), . . Lo .
and if there exists positive constantsC, e such that for alls,¢ ¢ R we 1S called aninfinitely Divisible Cascading random wakDC

have 5 . random walk).
€ . . . . .
Ed(Xs, X¢)” < Cls — 1 For practical use in simulations, we define
then there exists a continuous version’0f This version is Holder continuous

of order for eachfd < ¢/8. Vi, (t) = Bu(A:(1)). (53)
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B. Scaling properties different, they are in fact still equal in f.d.d. (conditiesh on

Using the self-similarity of By and the independenceth® constanQT(s))G. _ L _
betweenBy and A, one finds that We establish the following proposition in the Appendix V.

Proposition 3: For any » € [0,1], processes/; ;5 ,.(t) =

E[|Vy(t)]1] = ]E]E[|BH(A(t))|q\A] (54) B(A.(t)) and Z.(t) are identical in the sense of fi-
= E[|B(1)|7] - E[|A(t)|*"]. (55) nite dimensional distribution. FurthermordiZ,.(s)Z,.(t) =
]EVI/Q,T(S)VI/Q,T(t) =o? min(sv t)'
As an immediate consequence we get: Note that a definition of a proceséy , generalizing (60)

to the caseH # 1/2 rises the problem of a relevant definition
Theorem 2: Under the assumptions of Theorem 1, thergf the stochastic integration with respect to the fractiona
exist constantg’, and C,, such that for anyt < 1, Brownian motion which is up to our knowledge not properly

solved yet in the general case.
Cgt™ exp[—p(qH) m(C))] < ’ ’

E[|[VE (2)]1] (56) V. |LLUSTRATION

< thqH exp [—p(¢H)m(Cy)] . This section presents results obtained from numerical simu
lations of infinitely divisible cascading processes retipely
Theorem 2 calls for comments related to those concerniimgthe exact scale invariant case and in a non scale invariant
Theorem 1 (Section IlI-C). In particular, since bathy; and case. We know from Theorems 1 and 2 that the exact scale
A have stationary increments, so ddés. As a consequence, invariant case yields powerlaw behaviors of the moments of
for 7 < 1, incrementss, Vi of Viz obey: the increments ofA(t) and Vg (t) while departures from
q oH powerlaws are expected in the non scale invariant case. This
E[5;Vi] ~ Cq®™ exp [~ (qH)m(C-)] - (57) s illustrated below forcompound Poisson cascadas well
For 7 > 1, it reduces tdE[5, Vi] ~ C,79. as forlog Normal cascadesAIg.orithms usgd to produce the
Thus, IDC-Random Walks are processes with stationa$fmples shown here are detailed in Section VI.

increments that display non power law multiscaling prdxsmti
a priori over a continuous range of scales as well as positifle Parameters of numerical simulations

and negative fluctuations, see figure 3. The two following sets of infinitely divisible cascading
In the sc.ale Invariant case fO( which results were alreagyocesses possess the same general characteristicsrapart f
obtained in [21]-[23], (56) consistently reduces to their control measurem(t,r): dm(t,r) = cdtdr/r? in the

scale invariant case; = 3; dm(t,r) = cdtdr/r**” with
{6 = —0.4 in the non scale invariant case—= 20 (Example 2
of Section IlI-E). These choicésead respectively tan(C,) =
C. The case of the Brownian motion (H=1/2) —clogT and m(C,) = ¢(1 — 779)/(=p) for 7 < 1. Only

This section focuses on the simplest case, namely BrowngfflesT < 1 are influenced byn(C;). Note that the scale
motion with H = 1/2, and introduces a process meant tévariant situation is recovered from the non scale invria

mimic V; /. The proces is defined by the limiting stochastic ©n€ by taking the limit3 — 0.

thqHJrcsO(qH) <E|Vyt)]? < thqHﬂw(qH)_ (58)

integral Infinitely divisible cascading processes presented below
Z(t) = lim Z,(t) (59) are Compound Poisson Cascades (see (4) and Section 1I-D).
r—0 ’ Distribution F' of logW; is a log-Normal distribution with
where . moment generating functio’(¢) = E[W/] = exp(ug +
2.2
2.0 = | VOB, () 7 0°/2)so that
0

p(a) = c(1—exp(ug+o°q*/2))—cq(1—exp(u+0o®/2)) (61)
whenever it exists, witR /@, (s)dB(s) the correspondintbC ..o (1;0%) = (—0.1:0.05). Hurst exponentH of the

Ggussmn noise Qr(s) and B(s) are mdgpendent. In contrasty, tional Brownian motion used to buildy (t) has been set
with A,.(t) obtained from a deterministic integral, the process 7 _ 1/3

Z,(t) appears as a stochastic integral(@f(t). The process Many realizations are necessary to ensure statistical con-

.Zr(t) Is indeed ara”do'.“ walk In the scale invariant Ca}se’vergence of the (rudimentary) analysis procedure carrigd o
it corresponds to th#ultifractal Random Wallintroduced in here: we used about 1000 realizations % points corre-

[19]- sponding to a total amount of abo@t107 points. In both
Clearly, Z,(t) and Vi, ,(t) do not have equal paths..,seq - (resp. 791) term always dominates the behav-

Consider all paths for whicl®),(s) takes a constant valuej, o o E[5, A7), see (40) (respE[5, V], see (56)). As a

over a small interval, say ovdf, ¢|; note that this happens

with positive probability in our framework. Setting = Q,-(0) 6Since Ito integrals are defined vi&? approximation of the integrand by

for short, we find fort [0 5] that V; /5 (t) — B(Ct) while step functions, this argument bears validity beyond ouceuigse constant
' ' /27 cascades).

Zr(t) = \/aB(t)- While these parts of the paths are ObViOUSIy "The constantc has been set te = 3 in the scale invariant case and

¢ = 20 in the non scale invariant case in order to respectdheconvergence
5Again, '~ is used as a short notation for inequalities like in (40) §68). criterion of Proposition 1.
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Fig. 6. Compound Poisson Cascades. (Leftp(q) estimated from linear Fig 7. (Left) Scale invariant case obeys a very linear behaviorthat

regressions in log-log diagrams (6~ A/7)?] vs m(CT)-th'ght) ©(aH)  denotes an exact power law scalifBight) Non scale invariant case slightly

estimated from linear regressions in diagramdij{s, V/7)9] vsm(Cr).  deviates from a powerlaw behavior significantly:it is even directly visible
in a log E[(6, A/7)?] vs logT diagram.logE[(6-A/7)?] vs log T does
not exhibit a linear behavior even though it looks close tinadr behavior

consequence, the performed analysis focuses on the scaffifPare (eft) & (right).

behaviors of[E[(d,A/7)] ~ exp[—p(q)m(C;)], respectively

E[(6,V/71)9] ~ exp[—p(¢H)m(C; ).

Remark: Figure 5 shows similar results for log Normalthi
cascades witlr? = 0.2 and the same choice falm(t,r) as
above.

At this point, let us emphasize that, up to our knowledge,
s is the first example of a multiplicative cascade disjplgy
controlled non power law behaviors up to a large range of
scales (four decades on Figure 4).

B. Scale invariant cascade V1. ALGORITHMS FOR PRACTICAL SYNTHESIS

The well known scale invariant case serves as a referencg-his section is devoted to the key points entering the

to emphasize what is obtained in the_non scale invariant CaSfctical algorithms aiming at the simulation of the IDC-
As expected, the moments of the incrementsAt) and Noise, Motion and Random Walk. The corresponding

Vfé(t)dObey power Iaw; in a rI]arge rangeq Obe;;a'7es< Ilk MATLAB routines have been developed and used to produce
Indeed, Figure 4(51) i(c;\)/stt dt[(0,A/7)] behaves like yho jyystrations of Section V. They are freely available
exp[—p(q)m(Cr)] = 7°'7). Exponentsp(q) (resp.2(¢H))  ang documented on the web pages of the authors or upon
e_stlmated_ by linear regressions in log-log dlagra_ms are C{quest. Despite theoretical similarities, there are irtgma
sistent W'th expected theoretical valuesf} see Figure t_ﬁ(le ractical differences between the specific case of Compound
Sclm(llgr)ly, F'Q“re 4(b) shows tth[((STV/T, )] behfa\ves like Poisson Cascades and the general case of Infinitely Digisibl
T ; Estimated expo_nents are consistent with expect scadés They are presented separately in Sections VI-A
theoretical values, see Figure 6(right). & VI-B for the synthesis of the IDC-Noise and IDC-Motion.
Then Section VI-C explains how to obtain an IDC Random

C. Non scale invariant cascade Walk Vi, from an IDC Motion 4,.(t).

We now concentrate on the choice(C;) = ¢(1 —
778)/(~8), for 3 = —0.4. Therefore, departures from pow- Though the defined process are continuous-time processes,
erlaw behaviors corresponding to thep[—o(q)m(C,)] term algorithms output samples with a uniform sampling rate
in (40) are expected. Figures 4(c) & (d) show that sucht < 1. Let [0, T], with T > 1 denote the interval over
departures are observed on bottt) andVy (¢). Compare to Which processes are to be produced. With our definitions,
Figures 4(a) & (b) corresponding to the scale invariant cadBe scaling properties are prescribed in the range of scales
It is remarkable that these departures are accuratelyatmatr 7 < 7 < 1. Using the sampling period as a time reference, the
for 7 < 1 by the precise form ofn(C,) # —clogr. These characteristic scales of the constructions aye\t, 1/At and
numerical observations are perfectly consistent with ¢selts T/At.
of Theorems 1 and 2 (see also a direct derivation of the
scaling behavior for; = 2 in Appendix IV). Again, exponents A Simulation of Compound Poisson Cascades
»(q) (resp.p(qH)) can be estimated from linear regressions
in logIE[(6,A/7)] vs m(C;) (resp.logE[(5,V/TH)4] vs
m(C,)) diagrams —see Figure 6.

In this precise case, departures from powerlaw behaviers
even directly (slightly) visible without correcting the term

As explained in Section II-D, Compound Poisson Cascades
are built from two ingredients: a planar Poisson point pssce
él(ti,ri)} with density dm(t,r) in P* and i.i.d. random
multipliers W; with log W; distributed byF'. The planar point
process provides us with a natural sampling of the timeescal

. q . . 2
:2 ]Elgsggl t]o i?'lrt Inggcr?c')tl:gxuar(ftﬁ EPO;VS“;Z?? ﬂggt?o;] Jplane (see figure 8(left)), which makes things simple. Let th
y tfrapezoid® = {(¢/,r") : r < v/ < 1,—r'/2 <t < T+1r'/2}.

log T for 7 < 1. Note that the importance of this departure
from a powerlaw behavior depends on the precise order
of the considered momerE[d,A?]. Indeed, this effect is
proportional top(q)m(C;) in a log-log diagram. For instance,
wheng = 1, no departure will ever be observed singgd) = 0
by definition.

The synthesis algorithm consists of the following steps for
given resolutionr and duratiorr.

8Recall that not all infinitely divisible distributions ar@mpound Poisson
distributions.
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Fig. 8. (left) Compound Poisson Cascadeare built on a Poisson point proce§é;,r;)} and random i.i.d. multiplierd¥;. (right) Infinitely Divisible
Cascadesnecessitate an adapted discretization of the time-scalgeplkchema of the different trianguler,(A) and lozenge 4) subsets that contribute to
Qr(tx). This schematic vision is translated in the form of the matfi(¢;).

1) Determine the numbeN, of points (and multipliers) inverse of an integeAt = 1/\, while the resolutionr is
that will be used to comput@,.(¢) in the intervall0, T)]: chosen as = A\, At, with \;, A\, € N*. Therefore, a natural
it is a Poisson random variable with parametef©®);  discretization of the plan@®* appears as a combination of

2) SelectN, random pointgt;, r;) located in the trapezoid downwards triangle¥ (with random measure denoted by,

0, according to densityim/(t,r)®; lozenge$ (with measure denoted b3) and upwards triangles
3) SelectN, i.i.d. random multiplierd¥; such thatiog W; A (with measure denoted by)-see figure 8(right). At each
are distributed by ; time ¢, the terms that contribute t@,.(¢;,) can be gathered
4) For each time positione {t;, = kAt,0 < k < T/At}, in the following triangular matrix¥ (¢ ):
set _041 Qay, i
Q.(t) =exp[1 —EW)m(C,t)] - [[ Wi G T
(ti,ri)€CH(T) : :
. . . W(tr) = ' :
5) The approximate versioA,.(¢) of an IDC motionA(t) 0 Buowo -+ oo Buoan
is obtained as the discrete time integral@f(t): oGl . Ya,
Ox.—1
A= D Qty)-At. (62) - (63)
0<k<t/At wherevg = Ny — A —1landvy =g+ A\ = A\p — 1 > 1

A key feature of this algorithm is that it is easy to implemerflx,—1 denote a zero square matrix of sixg— 1. W(iy) is a
and has a low computational cost. Little modification id: X A: square matrix. We denote by(¢;) its diagonal and
necessary to get a causal version, in the spirit of the raeursCx, (tx) its last column:
algorithm proposed for non-CPC infinitely divisible casead Cr, (te) = (ars Brns - > Burons Yars Oxn—1)
below. D(ty) = (1,811, Bugwos 71,0x.—-1)

For given infinitely divisible distributionG (with moment

B. Simulation of Infinitely Divisible Cascades generating function@(q) = e *@) and control measure
Let us now turn to the simulation of (non compound Pois#m(t,r), the simulation consists of the following steps:

son) infinitely divisible cascades like, e.g., the Normalazale. 1) Computem(v) andm(a) as well as the various:(4)
The construction is no longer based on a discrete random  gepending on the position of the lozenge;

point process but rather on a continuous and independently) simulate then = M(¥), random variables distributed

scattered random- measufd on the time-scale p|§.n@+: according ton(v) (W|th moment generating function
no natural sampling appears. A relevant sampling of the @(q) — e~ P@m(V) see Appendix I); do the same with
PT must therefore be chosen, immediately rising the issues = M(4) andy = M(a) distributed byG,, ) and

of computational cost an_d availa_ble memory. To tgckle this Gom(a) TeSpectively;

problem, a causal recursive algorithm is proposed in orler t

simulate(. (1) for each{t, = kAt, k € N}. _3) Initialize ¥t = 0), and set Q.(0) =
Figure 8(right) gives an intuitive picture of our algorithm exp(p(1)m(C,)) exp y_; . ¥; ;(0);

With little restriction, the sampling period is chosen ae th 4) Recursively obtain‘I/(t):H) from () through the

9The non-uniform distributionrg(r) of the r; is achieved by a change of fOllOWIﬂlg .proced_ure.
variable from a uniformly distributed random variable. a) eliminate diagonaD(ty),
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b) translate all coefficients o¥(¢;) one column to where f(¢) is some bounded support function. Note that

the left, Definition 1 is recovered for the choicg¢ = 1,51/

c) simulate a new last columfly, (¢;+1), and insert Potential improvements of such a generalized formulatien a
it to form W (tx11), under study.

d) then getQ,(tx+1) using In practice, Infinitely Divisible Cascading processes doul

relevantly and efficiently replace the usual binomial cdssa
Qr(tir1) = Q,(ty) - exp (Z Cx,.i(trs1) — ZQ‘(%)) . which remain the most commonly used tools in applications.
p p We put the emphasis on the fact that the ability to account
dor departures from exact power laws is a major practical
improvement for the modelling of real empirical data.
The use of such processes to calibrate analysis and esti-

5) Repeat untik, = T (that is as long as needed, with n
limitation on the value ofl).
6) IDC Motion A, is obtained by simple integration (as

in (62)): mation tools should be of major benefit. We are currently
investigating the performances of the most commonly used
A= > Qu(ty)-At. (64) analysis tools thanks to those reference processes [45]. We

0<k<t/At are also designing new estimators for non power law scaling.

The matrix ¥(t,) plays the role of a "memory” of the Applications to hydrodynamic turbulence and to computer
process. In a way, ipropagatesthe correlation structure of N€twork traffic are under development.
process@,. This method of simulation results in a causal
construction. The adaptation of this algorithm to Compound APPENDIXI
Poisson Cascades is left to the reader. INFINITELY DIVISIBLE DISTRIBUTIONS
Let us recall some basics on infinitely divisible probabilit
C. Simulation of an IDC Random Walk distributions or laws. We denote the set of strictly positiv

Once an IDC Motion4,.(t) has been simulated, one obtain§tegers byN".
Vi,»(t) in two steps: Def'?"“‘?” . . o . N
1) Simulate a fractional Brownian motioRy; with Hurst A distributionG is called infinitely divisible if for alln € N

parametet{ thanks to the fast circulating matrix methoothere exists a distributiortz,, such thatG: equals then-fold

[43], [44]. This fractional Brownian motion is oversam-conVOIUt'on OfGr, With |t§elf_, de_noted agGn)"". o
In other words, the distribution of a random varialSleis

led by a fact dtaA,, ie.,iti thetized . =~ U . .
Ene a g);/r;l ;cveiqt)hcgmsp;artrr]el)o"ng ratleeAt/I LS SAy?/pe(:%? infinitely divisible if and only if for alln € N* the variableS
/ =

instancep = 16); can be written in law as the sum afi.i.d. variables:
2) SetVy.,.(tx) = Bu(t,) wheret, is such that|t;, — SV At Y
Ap(t)| = infy [t — Ap(tr)].
The processe§),, A, and Vi, shown in previous sections
have been produced with the algorithms described here.

Clearly, the distribution ot; ,, is G,, from the above defini-
tion. Again in different words, a distributio& with charac-
teristic functione=" is infinitely divisible if and only if for

VIl. CONCLUSIONS ANDPERSPECTIVES all n € N* e~¥/" is again a characteristic function. Moreover,
agne has:

In the present work, we proposed the definitions theorem (see Feller [32, p.432])
continuous-time processes that exh|b|t controlled cons Every characteristic functiofi[c??] of an infinitely divisible
multiscaling behavior. Mostly, scaling laws are continsioy . is necessarily of the formaxp(—u(-)). If =% is the

through th(_e scales and p953|ble departures from a pure POWEAracteristic function of an infinitely divisible disttbon G,
law behavior are taken into account. Up to our knOWIGdQEen for alls > 0, e~ 5% is the characteristic function of an

and despite some limitations, Infinitely Divisible Cascayli infinitely divisible distribution,.

processes are the first continuous multiplicative cascdiies Note that the same theorem can be written for the moment
playing controlled non power law scaling behaviors. Moregenerating functior@(q) — E[e?X] = e~*(@ for values ofq
over, algorithms for practical synthesis are givenATJAB such that it exists

functions as well as a companion paper [27] that puts the
emphasis on more applied aspects are available from our web
pages.

The theoretical study of the scaling properties of these
processes brought better understanding and new intuitiond© introduce random measures on the upper half plane
about the subtle interplay between cascading mechanisths & = {(t,7) : t € R,r > 0} the following notion is useful:
scaling phenomena. Aiming at a better localized controhin t Definition
time-scale plane, we are currently elaborating a variation An independently scattered (Borel) random measufeon

APPENDIXII
INDEPENDENTLY SCATTERED RANDOM MEASURES

this construction of the form PT is a measure-valued process defined on the Borel sets of
oy ., P* such that for all disjoint setg; and &,
0.0 exp [ f ( ] ) dM(t',r") 65 M (&) and M (&,) are independent random variables,

- ]Eexpff(t_t/)dM(t’,r’)’

r’

. M(gl U 52) = ]\/[(51) + M(gg)
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The additivity property makes it natural to construct sucimay write the following
random measures in an infinitely divisible framework. Lever (n—1) - - ) .
aging Feller's theorem from the previous section and foithv ’Ar/bn—l (/") = b1Qyn  (0)TA, . (/b )q’
Rajput & Rosinski [46] and Samorodnitsky & Tagqu [34] one o 1 q
-1(v / Q4 (AT (/0]

defines:
Let G be an infinitely divisible distribution with moment —b7. Qb Y0)1- A™ (t/pm)a ‘

Definition

generating functionG = e *. Let dm(t,r) be a positive - T/b"
deterministic measure o®*. Then, a measurd/ with the < sup |b9Q. (s )qAT%n (t/b™)4
two properties listed below is callecandom measure with Ossst
n—1 n n
control measuren and generato6'. —07Q%. (0 )in/in (t/b )q‘
« M is an independently scattered Borel measurefoft (n) g b1, \g 1 g
. for any Borel set€ of P+ the random variabledr(g) = 0" " Avjpn (1/07) ool Qi (5) = @ (0) ‘ (70)

distributed asG,, ), i.e.,
Using [EX — EY| < E|X — Y| and the definition ofAfﬁ;
Elexp [¢M (£)]] = exp [—p(g)m(E)] . (66) the claim follows.

If the choice of the infinitely divisible law is obvious from  pygof of Theorem 1.

the context, we may call/ simply infinitely divisible measure |n order to establish theorem 1 we would like to iterate the
with control measuren. Prominent examples are given in thgecyrsion (68): times keeping fixed. Thus, we will apply

text, such as Normal or compound Poisson distributions fg{a recursion successively Wlth/bk to the cascadesA k)
instance (see Section II-D). introduced in (37), fork = 1,...,n. According to lemma 7
we find (providedr < b™)
APPENDIXIII
q
REMAINING PROOFS OFSECTION I11-C A, () (71)

Lemma 6: Let0 <r <b" < 1. ThenA!™ is independent = ]E[ T/bn (t/b™)1] H b? - Qbk (0)7(1 + &P (t/b"))
of Qy~, thus also Oben and

1 n = p" . . " - (k) k
Af"’/lbnl)l(t/bn D) bn/ Qb" Qb (s)ds bMIE[Qp (0)7] ]E[ r/b" (t/b") 1;[ (147 (/b))

_ b/ QU T/bn (i)} (67) Here, we used mutual independence of B (25) to
b" collect the moments.
Let us first consider the cage= b". Fixing n, lettingr — 0

Proof . .
Simply plug the recursion (25) into the definition (37).4f», and usingC?-convergence yields
O EAWMM) (72)
Lemma 7: Fix 0. LetO <bH < landt > 0. n n - n—
The q> <r=bt< > = b E[Qy (0)7] - E[A™ H 1+ ® (k).
E|A£’;;n121(t/b"_l)|q (68) Here, the error terms are obtained by taking limits in (68).

Listing them in reverse order for convenience, they read as

= b7 BQR(0)] - BIAT, (1/0")7] - (L+ £ (t/0)). o
(i) (i ]E[A(n—z—l)(bzﬂ)q]
(n) (n) (n) e = . o L (73)
The error terme;- is bounded asfer ™ (s)| < A,/ (s). bIE[QY: " (0) 4] E[A(—1) (bi)4]

Proof Note that for fixedi each terme(~%(p') converges as

We will be using the fad® (see [47]) that for any positive (7 — o). Indeed, the finite dimensional distributions .4f*)

measurey and any positivey depend only and continuously en™ (C,.(t)NC,(s)) [23]; but

m(™) converges by assumption. In particularyif™) converges

/:C(s)d (s) ‘o | < sup |a(s)T () — . (69) to the trivial zero-measure, the@’. . and A" converge

I a = et a ' in distribution to the constant.

_ In addition, Lemma 7[c»~9(%)| < C(b*)". Since
Applying Iemma 6, thin (69) witd = [0, ¢] to the measure the sum S (1)1 converges absolutely, the product
y induced byA| /b“( /b™), and finally using (12) and (35) WE TS, (1 + (=9 (b%)) will converge by bounded convergence

to a finite, non-zero limit which can be consumed in the

Ondeed, since [;z(s)du(s) <  supy(z(s)u(I)) we have G onstants.
(f; z(s)dp(s))? < supger(x(s)?u(I)?). Now subtractC from both n
S{i’es Similarly, C — ([ a(s)du(s)1 < C — infu(a(s)ip()s) —  Similarly, the termsIE[A(™)(1)9] converge and can be

sup(C — x(s)9u(1)?). consumed in the constants.
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L(0,t) = L(O,u) U L(u,b)

R(0,1) = R(O,u) U R(u,t)

Fig. 9. Definition of £, B and R.

At last, the bounds have to be extended for alle

16

As a particular case we ha@%ﬁf*] (0)
Thus:

= L£(0,tb") U B(tb).

Elexp(gM (B(tb"))]]
ElexplgM (C1 ™" (0))]]

xE[ sup |exp[¢M (L(u,tb") UR(0,u))]
0<u<tbn

b,q -

—explgM (L0, t0")]|]  (78)

Here, we used that the tersi™(B(t?")) is statistically inde-
pendent of the other terms in the enumerator. We note that

]E[eqM(B)] -
E[erM(C )] m(Chn(0)))

exp[—p(q)(m(B) —

= exp[p(g)m(L(0,tb"))]. (79)
Finally, sinceL(u,v)UL(v, w) = L(u, w) with disjoint union
wheneveru < v < w, we find (75). O

[0,1]. Since Al(-) is a non-decreasing process, it is an €asy |; remains to bound the second term in (75) which we

exercise to show that a correctlon factor for the const
bound large enough & sup,, E| ZZ (0)?]. However, simi-
larly as beforeE[QY. ' (0)7] = exp|—p(q)m(Cl ' (0))] =
exp[—p(q)m™~1(Cy(0))] converges inn, this factor is
bounded. &

Proof of Corollary 2.

We establish corollary 2 via three lemmas. The first result

general and S|mpI|f|e$&(") by separating independent from

dependent parts ol (C. (u)) and M (Ch. 1( 0)). To this

aRthieve in the special cases of CPC and log-normal cascades.

Now the idea is to show that with very small and thus:
small, the control measures(R(0,u)) andm(L(0,u)) are
very small, thus the corresponding random variables ardl sma
with high probability and thug:?™(R©0:w)) gnd eaM(£(0,u))

are both close td. Thus their quotient is close to one and
the contribution to the last term in (75) is small with large
brobability.

Compound Poisson Cascadés. a matter of fact, that quotient
is exactly equal tol with large probability in the CPC case

end we introduce the following parallelepiped as subsets @hich is the main ingredient to the next result. The log-narm

the time-scale strip (see figure 9 far= 1):

L(u,v) ={(s,7) : 0" <r <" —r+u<s<—r+o},

B(t) = Cy(t) N Cy(0) (74)
={(s,7) : " <r <V 4t <s<r},
R(u,v) ={(s,7) : " <r<bv" ' r+u<s<r+o}
Lemma 8: For0 <t<1
Ay, (1) < explp(g)m(L(0, ")
E | eaM(£0.1™) eM(R(0.w) 75
e o2, |y 1] 9

Proof

First, we cancel the normalization terms @f which appear
in A"
AL() = (76)

Esupg<, <y | explgM (Ch (u))] — explgM (Ch (0))]
ElexplgM (€l (0))]] ‘

Next, checking the constraints on the variaklen (74)

one verifies quickly the following decomposition of a cone

C};:*l(u) into disjoint sets which is valid for € [0, tb"] and
for t <1 (see figure 9 fom = 1):
Ch (w) =

L(u, th") UB(t") UR(0,w).  (77)

case is somewhat more intricate.

Lemma 9: Fix ¢ > 0 andn € IN. Let0 < ¢t < 1. If
the weightsi¥ of a Compound Poisson Cascade have finite
¢-th moments, then there exist finite constafits) (see (75)
and (85)) such that

A () <t-Ct (80)

Assume in addition thaf," ¢ (r)dr = b" [, g(s)ds is
bounded. Ther@(™ < C for some constant'.

Proof

Since e?M(ROW) — aM(£L(0w)) with high probability, the
following crude bound will suffice to bound the error term.
To this end denote by (E) the number of Poisson Points
falling in some sett’ and define

LE)= ] Wi+1).
(ti,’r‘i)EE

By standard computatiori(is in essence a CPC but with new
weights, compare Example 4) we find, using thatE) =
E[N(E)],

(81)

)k
kl
[E[Wq] (E)] (82)

which is finite sincel’/ has a finiteq-th moment. Consider
the set

e ™MEVE[W 4 1]F

Mg

E[L(E

= L(0,th") UR(0, tb"). (83)
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Since€ contains all Poisson Points which may possibly appefnilowing fact: SinceX, and — X, are normal processes with
in the supremum in (75) (see also (78)) and sificé + 1 > E[X,] = 0forall s, E[X?] = 0 andE[(X;— X;)?] = £?|t—s|

max(1, W?) we find immediately usindga — b| < |a| + |b], we have
(&
sup | explgM (L (u, tb™) UR(0,u))] — explgM (£(0,t07))]| Pl sup |Xs| > ] = P[Sx(1) > 2] < 8exp(—2?) (90)
0<u<tbn 0<s<1 &
where ¢ is a real constant which does not depend on any
= sup H W; — H Wi statistics ofX; and where
Osustbm L(u,tb™)UR(0,u) L(0,tb™) 2 2 2 2
' £ = E[X(1)7] = ¢"varlM (£(0,1))7] (91)
< 2L(E), (84)

= ¢*o*m(L(0,1)).

in particular, Al(:q)(t) < oo0. To advance to a more accuraterhe same bound (90) with the sangeholds for Y, since
estimate let us note that the supremum in (84) actuahg[y(l)z] = o2m(R(0,1)) = €2.

vanishes whenever no Poisson Points falfin.e., whenever ;
N (&) = 0. But the probability of this happening B[N (£) =
0] = exp(—m(€)). Sincel — e~ * < a,
eIM(R(0,u))

Step 2: For simplicity of notation we assume here= 0;
more generally, every has to be replaced yp". Setting
I:=TE[e* - sup [e" ™% —1]|Sx(t) > 1 or Sy(t) > 1]
0<s<t

E |eaM(L(0.80™)
e sup x P[Sx(t) > 1 or Sy (t) > 1], (92)

} (85)
0<u<thn

< Pr[N(€) # 0] - E2L(E)] = m(€) - 2 exp[E[W|m(€)].

1

eaM(L(0u))

I:=E[e* sup |e" X —1|[Sx(t) <1, Sy(t) < 1]

Since 0<s<t

bt x P[Sx(t) <1, Sy(t) <1], (93)

m(&E) = 2m(L(0,td")) = 2tb /bn g(r)dr (86) we have, sincen(R(0, s)) = m(Z(0, s)),
the claims follow with lemma 8. &
E |[edMEO0D) qup |eaM (R(0,8)=aM(£(0,5) _ 1”

Normal Cascadedrinally, Theorem 1 applies to any normal 0<s<t
cascade as we show now. This will complete the proof of = edmEOD(T 4 ). (94)
corollary 2.

To estimatel and I it useful to observe that for afl € R we

Lemma 10: Fix ¢ > 0. Let0 < ¢t < 1. For any log-normal
z - ylog havele® — 1| < el®l — 1, and thus,

IDC there exist finite constants(™ such that

" " y—z y—z elvItl=l for all x,y,

At < VE-C, 87) [e¥ -1 <elvmrl1 g{ Szl + lo) 1 2] < 1, [y] < 1.
Assume in addition thajfb1 g™ (r)dr (38) are bounded for all |ndeed, fora < 0 we havele® — 1| = 1 —¢@ < e~ — 1
n, thenC™ remain bounded as — oco. since (e%/2 — e~%/2)2 > 0. The constant could be slightly

improved.
Proof First, to estimatel we define the event& , = {k >
Let us recall thatp(q) = —qu — ¢°0°/2, e, M(E) is Sx(t)>k—1,n> Sy(t)>n—1}andFy; := {Sx(t) >
N(m(E)u, m(E)a?). 1 or Sy(t) > 1}. Conditioned onFE}, ,, the following bound
Step 1: Consider the following processes holds for all0 < s < ¢t:
{ Xs = qM(L(0,s)) —gm(L(0,s))u (88) X lexp(Ys — X5) — 1| < ek(enek) = e,
Yo = qM(R(0,s)) — qgm(R(0,5))u.

. o ) Taking the supremum ovef and using self-similarity (89)
Both are Gaussian processes with independent stationary JRq (90), together with the independence’f and Y, for

crements of zero mean; thus they form Brownian motions « <  we find that] is bounded from above by the
which are unique up to a multiplicative scalar which can b(%.lgntity_

set through the variance at time= 1. In particular, they are
thus statistically self-similar, i.eX,; and+/aX are equal in EleXt Y- X

. . L E et sup |le"* 7 — 1||Eg.n, F1.1]| - P|Eg.n, I}
the sense of finite dimensional distributions. Note in addit <~ [ 0552t| [[Bsins Fra] - PBin, Fra]

that {X,}s<wn and {Ys}s<wn are independent sincg/ is pnt L G2 s (nay?
randomly scattered. < Z e t2k (6. o T2 T e €2 T
SetSx(s) = supg<, < | Xu| and Sy (s) similarly. Consid- (k,n)#(1,1)
ering continuous versions of the motion only we are lead to o . (95)

Sx(s) = sup |X,] 4 /5. sup |Xu| =Vs-Sx(1) (89) Elementary estimates usirgp(—u) < 1/u show thatl is not

Osuss Osusl only finite (note thatll is trivially finite) but O(t) ast — 0

with equality in the sense of finite dimensional distribnso with a prefactor that can be made arbitrarily closes4g?/c.
From Leadbetter [48, Lemma 12.2.1, p. 219] we borrow this a matter of fact] is O(t*) for any k.
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Second, using tth[V\V < z]P[V < z] < E[V] for any As a consequence,

positive random variabl® and (89) we find

I < Ble-5 sup (Yol + 1X)|Sx() < 1, Sy (t) < 1
0<s<t

P[Sx(t) <1, Sy(t) < 1]

5e - E[Sx(t) + Sy (t)]
Vit 10e - E[Sx (1)]
Vit-€-10e- E[Sp(1)).
Here, B(s) denotes normalized Brownian motion with
E[B%(1)] = 1; E[Sp(1)] is a known constant number.

Step 3: In summary: usingp(q) —qu — ¢*0%/2 and
lemma 8 there are constants and ¢, independent of any
parameters such that

Afl?(t) < (120" + 2 V™) exp|(—¢°

a2 /2)m(L(0,tb"™))].

(96)
The only dependence on parameters enters
m(L(0,tb™)) and through¢?. Notably,

b’ 22tb"m(L£(0, 1))
b
202()"/ g(r)dr
bn+1

1
¢*o? / g(”) (r)dr.
b

APPENDIX IV
EXAMPLE OF A DIRECT COMPUTATION IN A NON SCALE
INVARIANT CASE

We give below a direct derivation of the scalingIBf4 (¢)?
for Example 7 of Section llI-E, the special non scale invatria
case whendm(t,r) = cdtdr/r**P for -1 < 3 < 0. A
convergence criterion is given as well.

Using definition (27) ofA,(t), we have

-/ t / " EIQ, () Q, () du do

_ /0 t /0 " exp {—p(2)m (€, (w)

As a first step towards the auto-correlatiBfi, (u)Q, (v)]
we note that foru andv such thatu —v| < 1

1
m (Co(u) N Cy(v)) = /

mazx(r

¢

(97)

NCr(v))} dudv.

c
82—+ﬁ(s—|u—v|)ds

(98)
—wv| > 1. This yields

slu—vl)

m (Cr(u) N Cyr(v)) is simply zero for|u
whenevers ¢ {—1, 0}:

m (C-(t) NCr(s)) = (99)
[1-[t—s|" [t—s]| —(1+8)
¢ 3 147 (1_|t | )
forr<|t—s| <1, (a)
[1—r=" |t—s]| 15
‘5 tas )
for 0 < |t —s| <. (b)

E[Qr(u)Qxr( (100)
P/ oy ( | u—v |>
xexp[ 5(|1u+_51)1|_ ] forr <|u—v| <1,
exp (C%’g?) (1—7r7)
X exp [—%uﬁ_v'(l - 7’(1+ﬁ))] for |u —v| <.

Then,IEA,.(t)? in (97) decomposes in the sum of two integrals

on disjoint domaing; and&s:
& {(u,v) € [0, t]?
& {(u,v) € [0, t]?

(101)
(102)

cr < |lu—v| <1},
Su—v <71}

througihst, using the changes of variables

w

u—,
U+ v
2

{

the integral ove€; yields:

z )

/ngQr u)Qr(v )dudv—2exp<% - )>
X/O e )exp[ = (iL-ug v'(l P (0|
(103)

which vanishes astends to zero whenevgr< 0 and diverges
to infinity asr tends to zero whenevet > 0. Thus, the limit
r — 0 makes sense fas < 0 only.

Second, the integral ovel yields:

/ E[Q, (w)Q,(v)]dudv = 2°¢2)/5
&1

(104)
x / "~ w) exp [—gffif)@w‘ﬁ] exp (_Mw) .

1+0
1+ . .
Forw <« T , we can use the following approximation:
cp
cp(2)

o (2220 -1 4 o)

whereO(w) can be bounded by w for some constant.

(105)

/ E[Q, (u)Q,(v)]du dv ~ 2e°)/5 (106)
&1
(o ge)
, — n! ~ nl
where~y = _g(cfif)g)' For—-1 < (<0,
/g E[Q,(u)Q,(v)]dudv ~ (107)
cp(2)/8 N T 1 27" L O(r
; nl (1-Bn)(1 - 5n) )
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Moreover, the approximation (105) is true for

< ! J(rz)ﬁ =3 that is fort < 0.3. Thus we can consider
P
e with well controlled accuracy thaff(t) ~ g¢(t). Finally,
= using (97), (103), (107) and (111) ferl < B8 < 0:
) 2 o cp(2)/8 42 1-t7
E[A(t)"] =~ e t* exp (114)
1l — Tog,, O _ﬁ
.- 10g,,9()
-5 2 3 o t-é =] 0 fort < ‘ 1425 ‘ This exactly corresponds to the scaling behav-
%0 ior described in (40) of Theorem 1. Thus we have obtained by
Fig. 10. f(t) compared tog(t) for the choicef = —0.4, ¢ = 1, (2) = direct computation the non scale invariant behavior olesrv
—0.2. This figure may be compared to figure 4 on EA(t)? in Example 7 of Section III-E.
APPENDIXV
where |O(r)| < kr for some constant. Only the first term PROOF OFPROPOSITION3 (H=1/2)
will remain in the limitr — 0. Let o = £2) >0and—1< Let us considelV; /5 ,.(t) = B(A,(t)) and Z,.(t).
0 and Conditioning on knowingA,, note that{V; ,(t)| 7},
p<0an where F,. denotes the natural filtration, is a zero mean
B o Lt e Gaussian process. UsinBB(t)B(s) = o?min(t,s) with
ft) =exp(-at™?) =3 (-1)" — 7", 0% = var(B(1)) = E[|B(1)|?] we find
00 n=0 108
(-1)" g, (108) E[B(A,(s))B(A,(1)| 7] = 0® min(A,(t), A,(s)). (115)
g(t) = Z 1 - 18 r :
n=o A+ (1 = Bn)(1gn) n Together WithIE[A,.(¢)] — ¢ we getEB(A, (1)) B(A,(s)) =
To show that the scaling described by (40) of Theorem off min(t, s). o
is valid for ¢ = 2 is now equivalent to show thatf(t) — Let us now turn toZ, by considering{Z,(t)| 7.}. The

g(t)|/f(t) < 1 for t < 1. This is done by studying the sum integrand of the Ito integral in (60) being now determirsti
this is a zero mean Gaussian process. For simplicity, assume

S(t) = f(t) —9(t) s < t for the moment. We use a well-known rule of the Ito
no” 1 _ integral:
- Bn
S (- z ) (109) t S
B[ ) [ awas)
where 3 0
Cla) = (14 /)" (L= o)1 - 5a).  (110) / Fu)dB(u / () dB)]
The study ofC(z) for x > 0 shows that for any? < 0 there s
exists somer, > 0 such thatvz > z,, C(z) < 1 so that + B f(u)dB(u)/ g(v)dB(v)]
(1-1/C(x)) < 0. Then using usual criteria of convergence s 7 0
for partial sums of alternate series for> x,, one shows that: =o° (u)g(u)du. (116)
0
1S(®)] 1 5 . o
m o | 1— m t (111) In the second step we used that the integrals over disjoint

intervals are independent and zero mean. From this we obtain
Note that(1 — 1/C(1)) remains small in general since it is s

less than0.15 for —0.83 < 3 < 0. This result can be made E[Z,(t)Z,(s)| 7] = 0'2/ VQr(u)\/Qr(w)du  (117)
even more precise for a chosen example. For instance when ) 0 5 .

B = —04, p(2) = —0.2 andc = 1 as in Example 7 of =07 Ap(s) = 0" min(A4,(2), 4,(s)),
Section IlI-E and V, one obtains that for any< 1, that coincides with (115).

a2 1 B Conditioned on knowingl,., both processegV; s, ,-(t)| F; }

1S < a (1 - —0(1)> 7~ ) (1 - —0(2)) 727 (112) ang {Z,(t)|F,} are Gaussian with identical auto-correlation

o?min(A,(t), A.(s)). They are, thus, identical in the sense
1S(t)| of finite dimensional distribution, and so must be the uncon-
F) <003, Vi<l (113) ditional processe¥; o . (t) = B(A,(t)) and Z,(t). Further-

— A2
more,IEV] /5 - (£)V1 2, (s) = 0 min(s, t).

Ut is of interest to note thag(t) can be easily obtained by numerical N the standard Brownian casé/ = 1/2, we point out that

so that

integration from the second derivative &fg(t) given by: the incrementd/; /5 ,.(t) — Vi/2,-(s) and Vy 5 . (v) — Vi /2, (u) are
) a4 (second order)un-correlated wheneveru < v < s < t; this
dt2 [t g()] = 2exp [ 145" } : follows easily by conditioning orF, using the independence of the

increments of the ordinary Brownian motidB. However, they are
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not independentnd inherit higher order correlations frof.(s). [21]
Mandelbrot calls this the "blind spot of spectral analysisée also

[1]). [22]
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