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On non scale invariant
infinitely divisible cascades

Pierre Chainais, Rudolf Riedi and Patrice Abry

Abstract— Multiplicative processes, multifractals and more
recently also infinitely divisible cascades have seen increased
popularity in a host of applications requiring versatile multiscale
models, ranging from hydrodynamic turbulence to computer net-
work traffic, from image processing to economics. The method-
ologies prevalent as of today rely to a large extent on iterative
schemes used to produce infinite detail and repetitive structure
across scales. While appealing due to their simplicity, these
constructions have limited applicability as they lead by default
to powerlaw progression of moments through scales, to non-
stationary increments and often to inherent log-periodic scaling
which favors an exponential set of scales. This article studies
and develops on a wide class ofinfinitely divisible cascades(IDC),
thereby establishing the first reported cases of controllable scaling
of moments in non-powerlaw form. Embedded in the framework
of IDC these processes exhibit stationary increments and scaling
over a continuous range of scales. Criteria for convergence,
further statistical properties as well as MATLAB routines are
provided.

Index Terms— fractional Brownian motion, infinitely divisible
cascades, multifractal, multiplicative cascades, multiscaling, ran-
dom walk, turbulence.

I. I NTRODUCTION

Scaling behavior has become a welcome parsimonious
description of complexity in a host of fields including natural
phenomena such as turbulence in hydrodynamics, human heart
rhythm in biology, spatial repartition of faults in geology, as
well as mankind activities such as traffic in computer networks
and financial markets. The multifractal formalism (see [1] for
an extensive set of original references) has received much
attention as one of the most popular framework to describe and
analyze signals and processes that exhibit scaling properties,
covering and connecting both local scaling and global scaling
in terms of sample moments.

The term scale invariance, e.g., refers in various fields
to a relation between the absolute moments of increments
δτX(t) = X(t + τ) − X(t) of a processX and thelag τ
in form of a power law. More precisely, scale invariance is
then described by a set of multifractal exponentsζ(q) defined
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through

IE|δτX(t)|q = Cq(τ)τ
ζ(q) asτ → 0, (1)

whereCq(τ) is assumed either to be constant, to be bounded
between positive constants, or to be a more general function1

depending on the context. For instance, statistically self-similar
processes such as fractional Brownian motionBH(t) [2] with
Hurst exponentH fit into this framework withζ(q) = qH and
Cq constant equal toIE[|BH(1)|q]. The Binomial multiplica-
tive cascades, among others, fit with a strictly convex function
ζ(q) and boundedCq(·). The multifractal formalism connects
the scaling exponentsζ(q) via the Legendre transform to the
local degree of regularity of the path of the process.

In real world applications, the notion ofζ(q) in (1) is of
limited use, since one is able to observe only a limited range
of scales from actual data. For clarity, when scaling laws are
meant to hold for scales or lagsτmin ≤ τ ≤ τmax we use the
term multiscaling. Note that for the multifractal formalism to
apply rigorously one needs scaling as in (1) down to infinitely
small scales.

In addition, the functional form of a powerlaw in (1) can
be limiting in applications, such as in networking [3], [4].
The framework of theinfinitely divisible cascades(IDC),
introduced first as a concept of analysis in fluid turbulence (see
[3], [5]–[9]), answers to both short-comings. By integrating the
contribution of all scales in a range of interest, IDC-analysis
allows for more flexible scaling and thus better fitting of data
by setting:

IE|δτX(t)|q = Cq exp[−ζ(q)n(τ)], for τmin ≤ τ ≤ τmax,
(2)

where the functionn(τ) is assumed monotonous and can
be interpreted as thedepthof the cascade. Such a behavior
is analysed in terms of acascading mechanismthrough the
scales fromτmax to τmin. Moreover, the IDC framework
(2) encompasses the scale invariance (1) as the special case
n(τ) = − log τ .

Besides the broader context of the IDC framework in terms
of scaling-laws and -ranges, a further difference to multifractal
analysis may be noted in its spirit. Multifractal theory uses
notions such as the scaling exponentsζ(q) which tend to be
defined as to exist a priori and not to put any condition on
the analyzed process (compare footnote 1) and it is concerned
with inferring fine grained, local properties of processes and
signals from global scaling in various settings (see [1] foran
extensive set of original references).

1Multifractal analysis usually works with a definition whichapplies to any
process and which reads as:lim infτ→0 logτ Cq(τ) = 0.
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The framework of IDC, on the other hand, formulates
a condition on the process or time series at hand, namely
separabilityof IE|δτX(t)|q as a function of scale and order
according to (2). This functional form may or may not hold for
a process and therefore provides a true property of a process
beyond a statistical description of the kind of scale invariance
(1).

Note that both multifractal analysis and IDC scaling can
be formulated in terms of wavelet coefficients by replacing
increments(1) by wavelet coefficients2 (see [1], [3], [8],
[10]–[13] and references therein for original developments,
applications and surveys).

While analysis tools for multiscaling processes and in-
finitely divisible cascades have been widely developed (see
[3], [5]–[9]), only few recent works proposed actual models
and tools for synthesis of processes with prescribed and con-
trollable IDC scaling. Since thebinomial cascadespopularized
by Mandelbrot [14]–[16], multiplicative cascades have always
played a central role as a paradigm of multifractals, leading
to advances on random self-similar measures of considerable
generality.

Shortly after the turn of the millennium the time seemed
ripe for IDC processes. In a very original approach, Schmitt
& Marsan [17] describe scale invariant infinitely divisible
cascades by a stochastic equation resulting from the den-
sification of a discrete multiplicative cascade. Their work
gives decisive indications towards the unification between
Mandelbrot’s approach and the infinitely divisible cascades
approach; however, it does not cover scaling properties in
details. Barral & Mandelbrot [18] introduced theMultifractal
Products of Cylindrical Pulses(MPCP) also calledcompound
Poisson cascades (CPC)and provided their rigorous multi-
fractal description. While cast as multiplicative cascades in
[18], the CPC show infinitely divisible power law scaling and
are but a special case of IDC processes mentioned later. By
prescribing the correlation function of the incrementsδτX of
a random walk, Bacry, Delour & Muzy [19], [20] introduced
the pioneeringMultifractal Random Walk(MRW) that later
turned out to be a particular case of a more general framework
[21], [22] (see below). Finally, Bacry & Muzy [21], [23]
introduced log-infinitely divisible multifractal processesand
provided strong results on convergence and scaling behavior,
extending some of the results for compound Poisson cascades
[18].

Inspired by earlier ideas of Mandelbrot [24] but indepen-
dently from the above,Infinitely Divisible Cascading processes
were introduced in [22], [25], with the main goal to provide
processes with controllable non-powerlaw scaling, especially
in the framework of CPC with their associated random walks.
This article follows up with rigorous results and practical
algorithms on Compound Poisson and log-normal cascades
as special cases of IDC processes. Doing so, we introduce the
non scale invariantInfinitely Divisible Cascading (IDC) noise,
motion and random walk. These continuous-time continuous-
scale processes possess stationary increments and exhibit

2However, as far as non scale invariant objects are concerned, one has to
take care. Indeed, the fact that scale invariance exponents(1) do not depend
on the wavelet base is deeply related to the scale invarianceof the process.

prescribed departures from power law behaviors in the sense
thatn(τ) 6= − log τ in (2).

In Section II, we recall the basic definition and properties
of the infinitely divisible cascading noise(IDC-noise) and
point out its interesting degrees of freedom. Doing so, we
provide straight-forward extensions of recent convergence
results [26]. In Sections III and IV we introduce theinfinitely
divisible cascading motion(IDC-motion) and their associated
random walk(IDC-random walk) and study their statistical
properties. For both the IDC motion and random walk, we
put the emphasis on pinpointing their departures from power
law behaviors as accurately as possible. In Section V we
provide numerical simulations of non scale invariant processes;
in Section VI we give details on practical algorithms for
IDC processes simulation. Conclusions and perspectives are
reported in Section VII. For the sake of flow, we postpone
mathematical complements and proofs to the Appendices I
to V. Practical properties of these processes relevant for
applications are detailed in a companion paper [27].

II. I NFINITELY DIVISIBLE CASCADING NOISE

A. Background

The distinguishing and defining common feature of cascades
consists in an underlying multiplicative construction which
is iterated across scales. The well knowncanonical binomial
cascadeas introduced by Mandelbrot [14], [15] may be viewed
as the archetype of multifractal random measures. Among the
several ways of defining the binomial cascade, the most useful
in our context is via the iterative products

βn(t) =
∏

{(j,k):1≤j≤n,t∈Ij,k}

Wj,k

= βn−1(t)
∏

{k:t∈In,k}

Wn,k.
(3)

Here, Ij,k stands for the nested dyadic intervals[k2−j, (k +
1)2−j) andWj,k denotes i.i.d. positive random variables of
mean one (IEWj,k = 1). By construction,βn is constant over
each intervalIn,k.

An equivalent construction of the binomial cascade empha-
sizes the measure-theoretic aspect by considering theβn as
densities and studying their distribution functionsXn(t) =
∫ t

0
βn(s)ds. As positive martingales, these converge weakly

to a limiting distributionX [16], [28], which exhibits scaling
of the form of (1) with boundedCq(·). Attractive from a signal
processing point of view is the iterative aspect of (3) which
allows for fast, tree-based synthesis algorithms as the one
used for the so-called MWM model [29]. This underlying tree
structure is inherited from the nested arrangement of theIj,k
which may be represented by the points((k + 1/2)2−j, 2−j)
in the (time,scale)-plane (see figure 1, left).

However, such cascades have two major drawbacks. They
are not strictly stationarysince the construction is not time-
shift invariant; this may result in “blocking effects”. Further,
by construction the scaling of moments is log-periodic and
favors, in particular, the scale ratio equal to2.

Following a more recent idea of Mandelbrot [24] one
may overcome both drawbacks by replacing the rigid, nested
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Fig. 1. Comparison between the “time-scale” construction of multiplicative cascades. Left:Nested geometry behind the binomial cascade,Center:
Stationary discrete geometry behind the Compound Poisson Cascade,Right: Stationary continuous geometry behind the Infinitely Divisible Cascade. The
shaded cones indicate the regions that determine the value of the cascade at timet.

arrangement of multipliersWj,k of the binomial cascade
by a planar Marked Poisson Point Process{(ti, ri,Wi)}i;
this lead to theMultifractal Product of Cylindrical Pulses
(MPCP), also calledcompound Poisson cascades(CPC) (see
figure 1, center). More precisely, introducing the coneCr(t) =
{(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤ t′ < t+ r′/2} the MPCP (or
CPC) cascade reads as:

Q̃r(t) =
∏

(ti,ri)∈Cr(t)

Wi, Qr(t) =
Q̃r(t)

IE[Q̃r(t)]
. (4)

Note that the binomial cascade uses similarly all multipliers
Wj,k such that((k+1/2)2−j, 2−j) belong to some cone above
time t.

To obtain simple iterative scaling laws for the MPCP (or
CPC) one ensures that each “exponential frequency band”
of scales between2−j−1 and2−j contributes on the average
the same number of multipliers toQr(t). This results in an
expected number of Poisson points inCr(t) proportional to
− log r, just as for binomial cascade. Powerlaws in the form
of (1) with boundedCq(·) are then recovered, together with
the powerful multifractal formalism [18].

Noting that compound Poisson distributions are infinitely
divisible, it seems only too natural to generalize the compound
Poisson cascades (CPC) to theinfinitely divisible cascades
(IDC) by generalizing (4) to the form

Q̃r(t) := expM(Cr(t)) (5)

with a continuous infinitely divisible random measure
dM(t, r) (see Section II-B and Appendix I). This was done in
previous works [21]–[23] which dealt with the scale invariant
case yielding power law scaling.

In this paper we are mainly interested in scalings that
involve departures from exact power laws. As we observed
in CPC case, powerlaws go hand in hand with an average
number of multipliers in the coneCr proportional to− log r.
This suggests to abandon the idea of statistically identical
contributions from exponential frequency bands in order to
find non power law scaling; as we will see, this comes at the
cost of simple iterative arguments.

1

r

C
r
(s) ∩ C

r
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0 s t

Fig. 2. The dependence betweenQr(t) and Qr(s), in particular their
correlation, stems entirely from the measure of the intersection of two cones
Cr(t) andCr(s)

B. Infinitely Divisible Cascades: basic notions

We recall now the definition of theInfinitely Divisible
Cascading noise[21]–[23], [25] which generalizes the CPC
(4) of Barral & Mandelbrot [18] as well as ideas of Schmitt
& Marsan [17]. Note that IDC are closely related to the
Lévy stable chaos of Fan [30]. Note also that IDC enter the
framework of the T-martingales of Kahane [31].

To this end letG be aninfinitely divisible distribution(see
Appendix I) with moment generating function

G̃(q) := exp[−ρ(q)] :=

∫

exp[qx]dG(x). (6)

Let dm(t, r) = g(r)dtdr a positive measure on the time-
scale half-planeP+ := R×R

+. LetM denote an infinitely di-
visible, independently scattered random measure distributed by
G, endowing the time-scale half-planeP+ and associated to its
so-called control measuredm(t, r) (see (66) in Appendix II).
In particular, we have for any Borel setE

IE[exp [qM(E)]] = exp [−ρ(q)m(E)]

= exp

[

−ρ(q)
∫

E

dm(t, r)

]

.
(7)

The specific choice of a time-invariantcontrol measure
dm(t, r) = g(r)dtdr is not essential to a valid definition but
is added to ensure stationarity ofQr.
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Finally, acone of influenceCr(t) is defined for everyt ∈ R

as (see figure 1)

Cr(t) := {(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤ t′ < t+ r′/2}. (8)

Choosing the large scale in the coneCr(t) equal to 1 is
arbitrary and amounts to a simple choice of time and scale
units. Furthermore, the symmetry of the cone’s shape inflicts
a causal as well as an anticipating component. Scaling results
presented below extend without restriction to a purely causal
version such asCr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t−r′ ≤ t′ ≤ t}.

Definition 1: An Infinitely Divisible Cascading noise(IDC
noise) is a family of processesQr(t) parameterized byr of
the form (see Figure 3)

Qr(t) =
expM(Cr(t))

IE[expM(Cr(t))]
= exp[ρ(1)m(Cr(t))] expM(Cr(t)).

(9)

In the light of the Compound Poisson Cascades of the
previous section, the IDC-noise can be interpreted as a “con-
tinuously iterative” multiplication (compare figure 1 (left) &
(right)). An immediate consequence of the definition is that
Qr is a positive stationary random process with:

IEQr = 1. (10)

The key property (7) reminds of (2) in how it separates
the dependence of the moment orderq; it lies at the origin
of all scaling properties obtained in the sequel. Indeed, the
distributionG controls the structure function throughρ, while
the control measurem and the shape of the coneCr(t) set the
speed of the cascade. Choosingm(Cr) proportional to− log r
will lead to powerlaws. Aiming at non-powerlaw behaviors,
one may explore these degrees of freedom offered by the
cone and the control measure. However, one should keep in
mind that a change in the choice ofdm(t, r) can be expressed
equivalently by an appropriate change in the shape of the cone
Cr(t).

C. Infinitely Divisible Cascading Noise: first properties

A direct consequence of the infinite divisibility of the
random measureM and eq. (9) is thatQr(t) has a log-
infinitely divisible distribution, that islogQr(t) has an in-
finitely divisible distribution. Also, the IDC noise adheres to
a form of exact scaling, however, not in the sense of (1) but
with respect to the indexr. It is convenient to set

ϕ(q) := ρ(q) − qρ(1) = − log

(

IE[eqX ]

IE[eX ]q

)

= − log

(

IE[Zq]

(IE[Z])q

)

,

(11)

whenever defined, whereZ = exp[X ] and whereX is
distributed according to the infinitely divisible lawG. Note
that ϕ(1) = 0 by definition and thatϕ(q) ≤ 0 for all q > 1
for which it is defined. To see this recall the well-known fact
that characteristic functions are log-convex. Consequently, ρ is
concave and so must beϕ due to (11). Sinceϕ(0) = ϕ(1) = 0
the claim follows.

Lemma 1: Let Qr be an IDC noise. Then,

IE[Qqr] = exp [−ϕ(q)m(Cr)]

= exp

[

−ϕ(q)

∫ 1

r

ug(u) du

]

.
(12)

The fact that the distributionG underlying the IDC noise
in Definition 1 is infinitely divisible is key to ensure the
separation of the dependence of the momentsIE[Qqr] on order
q and resolutionr (12). Power law behaviors will be recovered
for the scale invariantcase defined by [18], [21]–[23]

m(Cr(t)) =

{

−c · log r for 0 ≤ r ≤ 1
0 for 1 ≤ r.

(13)

or equivalently

dm(t, r) =

{ c

r2
drdt for 0 < r ≤ 1,

0 for 1 ≤ r.
(14)

Eq. (12) becomes

IE[Qr(t)
q] = rcϕ(q). (15)

Interestingly, the correlations of IDC noises —and in fact all
finite dimensional distributions [23]— are entirely determined
by the geometry of the cascade in terms of the intersection of
cones in the time scale plane (see Figure 2):

Lemma 2:

IE[Qr(t)Qr(s)] = exp [−ϕ(2)m(Cr(s) ∩ Cr(t))] . (16)

In the scale invariant case of (13), Eq. (16) becomes

IE[Qr(t)Qr(s)] =
{

| t− s |cϕ(2) e−cϕ(2)(|t−s|−1) for r ≤ |t− s| ≤ 1,

1 for 1 ≤ |t− s|.
(17)

The equation above approximately behaves as a powerlaw for
small values ofr < |t− s| � 1, while the finite scale effects
are rendered by the exponential term for|t−s| ' 1. Note that
an exact powerlaw behaviorfor all r < |t − s| ≤ 1 may be
recoveredin eq. (17) by adding a Dirac distributioncδ(r− 1)
to g(r) = c/r2 in the definition ofdm(t, r). Indeed, we have
then

m(Cr(s) ∩ Cr(t)) = −c log |t− s|. (18)

This corresponds to the choice made by Bacry & Muzy [21]
to build exactlyscale invariant measures.

D. IDC noise: Examples

Infinitely divisible distributionsG that may be used in this
construction are often among well known common distribu-
tions [32]. Most of these models have already been proposed
for the modelling of intermittency in the context of turbulence
in fluid mechanics [9]. Note that all expressions ofϕ(q) =
ρ(q) − qρ(1) are constrained by the normalization ofQr that
imposesϕ(1) = 0. Prominent examples include:

Example 1 (Normal): The underlying distributionG of
the random measureM is normal, i.e.,N (µ, σ2) [33]. Then,
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ρ(q) = −µq − σ2

2
q2, so thatϕ(q) = ρ(q) − qρ(1) depends

only on one parameter:

ϕ(q) =
σ2

2
q(1 − q). (19)

Example 2 (Stable): The underlying distributionG of the
random measureM is stable, i.e.,S(α, σ, µ, β) [34]. Such a
choice would correspond to the model of turbulence proposed
in [35]. Due to the heavy tails ofG, normalizing the associate
IDC noise (9) is only possible within a special range of
parameter values. Indeed, choosing the tail exponentα <
1 and the skewness parameterβ = −1 then the random
variable X with law G is almost surely smaller than the
position parameterµ, and the Laplace transformIE[exp[qX ]]
is meaningful forq > 0 [34, Prop 1.2.12]. One findsρ(q) =
−µq−σα|q|α(1+βsign(q) tan(πα2 )) with 0 < α < 2 (α 6= 1)
andβ = −1, so that

ϕ(q) = σα(q − qα)
(

1 − tan(
πα

2
)
)

for q > 0. (20)

Example 3 (Gamma): The underlying distributionG of
the random measureM is Gamma [32], [36]. Setting its
parameters asα > 0 andβ > 0, we findρ(q) = α log(1−q/β)
which yields

ϕ(q) = α log

(

β − q

β

)

− αq log

(

β − 1

β

)

. (21)

Example 4 (Compound Poisson):Compound Poisson
Cascades (CPC) originally proposed in [18], [24] (see also
[37]) were set as a special class of IDC noise in Section II-
A. Since the multipliers{Wi}i are i.i.d. positive random
variables independent of the point process(ti, ri)i (see
(4)), the underlying distributionG of the random measure
dM(t, r) =

∑

i: (ti,ri)∈dt×dr
log[Wi] is here the compound

Poisson distribution associated with the common distribution
F of the log[Wi]. The Laplace transform ofF simplifies
to F̃ (q) = IE[W q]; the compound distribution ofF is
given by G̃(q) = exp[λ(F̃ (q) − 1)] whereλ stands for the
expected number of Poisson points. Since we can absorbλ
into the control measurem, we may assumeλ = 1 and set
ρ(q) = 1 − IEW q and

ϕ(q) = 1 − IE[W q] − q(1 − IE[W ]). (22)

Alternatively, an explicit computation of (12) confirms this
form of ϕ up to a constant which can be absorbed into the
control measurem.

Example 5 (Pure Poisson):The well-known She-Levêque
model [38], [39] in the field of turbulence proposes a scaling
with pure Poisson distributions. This can be realized with
the simplest compound Poisson cascade whereW reduces
to constantW0 with Dirac distributionF and an underlying
pure Poisson distributionG of the random measureM . Noting
IE[W q] = W q

0 , (22) becomes

ϕ(q) = (1 −W q
0 ) − q(1 −W0). (23)

E. Additional comments

1) Self-similar processes:from the point of view of the
analysis of scaling, self-similar processes can be seen as a
particular case of multiscaling processes (cf. (1)). However,
we emphasize that self-similar processes cannot be directly
built as IDC noises. Self-similarity would correspond to a
linear dependence ofρ(q) on q of the form ρ(q) = aq. It
corresponds toG = δa andϕ(q) = 0 which describes a trivial
cascade that yields a constant IDC noiseQr(t) = 1. There is
indeed no cascade of multipliers in this case.

2) On the notions ofresolutionr andscaleτ : we draw the
attention of the reader onto potential confusions on the true
nature of the parameterr entering the definition of an IDC
noiseQr. Considering formal analogies between equations (2)
and (12) for instance,r seems to play a role equivalent to
τ and therefore can be considered as ascale. However, it
should better be analysed as aparameter of resolution: Qr
is the intermediate stage of a construction that evolves with
parameterr whereasτ is the scaleover which variations of
Qr(t) may be analysed.

III. I NFINITELY DIVISIBLE CASCADING MOTION

While Section II-A lays the basis for continuous-scale or
infinitely divisible multiplication, this section concerns the
limiting behavior of the cascading noiseQr(t) as r → 0
which makes it necessary to introduce its distribution function
or primitive Ar(t) =

∫ t

0
Qr(s)ds as well as the scaling

behavior of the limiting processA of Ar as r → 0. Despite
their appearing rather formal and mathematical, the questions
of the behavior ofQr and Ar as r → 0 result crucial in
practice. Indeed, numerical simulations result efficient and
interesting in case of convergence only. Sections III-A and
III-B deal with these problems of convergence and define the
infinitely divisible cascading motion. Then section III-C states
our principal results on the scaling behavior ofA. These results
are discussed in section III-D and two non scale invariant
examples are given in section III-E.

A. Definition (almost sure convergence)

The IDC noise inherits a powerful martingale property di-
rectly through the underlying infinitely divisible construction.
Martingale techniques have traditionally been used to estab-
lish weak convergence of cascades ever since the celebrated
work on T-martingales by Kahane & Peyrière [16], [28]. For
convenience set forr < s < 1:

Qsr(t) := exp [ρ(1)m(Cr(t)\Cs(t))] exp [M(Cr(t)\Cs(t))]
(24)

and note
Qr(t) = Qsr(t) ·Qs(t), (25)

whereQsr(t) andQs(t) are independent, and both of mean
1. Indeed, this is a simple consequence of (7), (9) and ofM
being independently scattered. Denoting byFs the filtration
induced by the processQs(·) it follows, still for r < s < 1,
that

IE[Qr(t)|Fs] = IE[Qsr(t)] ·Qs(t) = Qs(t). (26)
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Fig. 3. Sample of a realization ofQr(t) (left), A(t) (middle) andVH(t) (right).

Thus,{Qr(t)}r>0 forms a continuously indexed martingale
for each t. Furthermore, it is left-continuous, meaning that
Qr(s) → Qs(t) as r ↑ s since∩r<sCr(t) = Cs(t) due to
(8). Thus,Q1/u(t) is a right-continuous martingale, where
we are interested in the limitu → ∞; this corresponds to
the traditional setting of the martingale convergence theorem
which we recast here according to our setting.

Lemma 3: An infinitely divisible cascading noise
{Qr(t)}r>0 forms a positive, left-continuous martingale.
Thus, it converges almost surely asr ↓ 0.

Invoking the Law of Large Numbers it is then easy to show
that Qr(t) converges almost surely and for almost allt to
zero in many cases of interestsuch as the scale invariant
cascades. Indeed,IE[logQr(t)] is strictly negative due to
Jensen’s inequality, except in trivial cases. In rare places t,
the noise will diverge to infinity (see Figure 3) keeping on
average a reasonable total mass when interpreted as a density.
Motivated by this degeneracy of the limit ofQr (see lemma 3)
and by analogy with the binomial cascades [14] and the theory
of T-Martingales [28] we introduce theInfinitely Divisible
Cascading Motionfrom the distribution function of the noise:

Ar(t) =

∫ t

0

Qr(s)ds. (27)

Note that

IE[Ar(t)] =

∫ t

0

IE[Qr(s)] ds = t. (28)

The following lemma permits to properly define the limiting
process obtained in the limitr → 0.

Lemma 4: Let Qr(t) denote an IDC-noise. There exists a
cadlag (continuous from the right, limits from the left) process
A(·) with stationary increments such that almost surely

A(t) = lim
r→0

Ar(t), (29)

for all rational t simultaneously. This processA is called
Infinitely Divisible Cascading Motion(IDC-Motion).

Proof
Since conditional expectations commute with integrals,
{Ar(t)}r forms for everyt a positive, left-continuous mar-
tingale with respect to the filtration induced byQr(·). It
converges, thus, almost surely for all rationalt simultaneously.

SinceQr > 0, allAr andA are non-decreasing and have limits
from the left and right; thus,A can be extended to all realt
by making it continuous from the left. ♦

The increment processδτAr(t) of Ar,

δτAr(t) = Ar(t+ τ) −Ar(t) =

∫ t+τ

t

Qr(s)ds, (30)

inherits full stationarity fromQr. Recall that stationarity of
Q essentially roots in the time invariance of both the control
measurem and the shape of the coneCr.

B. Convergence inLq

While almost sure convergence is convenient to ensure a
general definition, one requires the existence of moments to
study scaling behavior. In addition, nothing assures a priori
that A in (29) does not degenerate to zero itself. However,
convergence inLq for some q > 1 allows to conclude
IE[A(t)] = t from (28) and implies the non-degeneracy of
A. Upto our knowledge, there is no general result available
for q > 2 and only1 < q ≤ 2 will be considered here. In the
scale invariant case, finer results for finiteness of momentsof
positive oreders can be found in [18], [21], [23].

The most simple such convergence criterion is in terms of
a second order analysis and follows from standard facts on
L2-bounded martingales.

Proposition 1: An IDC MotionAr converges inL2 if and
only if there exists some finite constantK such that for all
r > 0

IEAr(t)
2 =

∫ t

0

∫ t

0

exp {−ϕ(2)m (Cr(u) ∩ Cr(v))} dudv

< K. (31)

When this condition is verified,A(t) is non-degenerate and
IE[A(t)] = t.

In the scale invariant case (13), explicit computation renders
the criterion (31) equivalent tocϕ(2)+1 > 0 (see [18], [23]).
Recall thatϕ(2) is always negative –see (11). It is an easy
exercise to verify this claim by explicit computation for the
compound Poisson cascades with multipliersW of mean one
where−ϕ(2) is simply the variance of the multipliers.
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Going into more mathematical details, a more general
criterion is obtained by extending a theorem by Barral [26,
Thm 6] as follows:

Proposition 2: Let 1 < q ≤ 2. Fix t > 0. Assume that
there exists an integerko ≥ 2 such that

∑

n≥0

k−n(1−1/q)
o

(

IE[Qq
tk−n−1

o
(t)]
)1/q

=

∑

n≥0

k−n(1−1/q)
o exp[−m(Ctk−n−1

o
) · ϕ(q)/q] <∞. (32)

Then,Ar(t) converges almost surely and inLq.

Proof
First, one needs to extend, in fact, lemma 3 of [26] from
CPC to arbitrary IDC. This is done by using the auxiliary
IDC cascade induced bydM ′(t, r) = p · dM(t, r) which
is obtained by rescaling the underlying measureM of the
original IDC by the constantp. For a CPC, this amounts to
replacing the positive multipliersW by W q as done in [26].
Second, one verifies that the assumptions of [26, Thm. 6(ii)]
hold by exploiting the time-invariance of the cones used here.

♦

Corollary 1: Let 1 < q ≤ 2. A sufficient condition for
convergence ofAr(t) in Lq is

lim sup
n→∞

1

n
m(Ctk−n−1

o
) <

q − 1

ϕ(q)
log(1/ko) (33)

for some integerko ≥ 2 (recall that ϕ(q) < 0). In the scale
invariant case ofm(Cr) = −c log(r) this becomes

(q − 1) + cϕ(q) > 0. (34)

Such criteria have been obtained in [23] for scale-invariant
IDC, and in [26] for CPC. As will follow from the scaling
properties ofA, they are quasi tight for certain IDC (see
corollary 3).

C. Scaling properties of an IDC-Motion

This section outlines our main theoretical results which
characterize the scaling properties ofnon scale invariantIDC-
Motions. Note that currently existing results cover the scale
invariant case only [21]–[23]. For sake of a fluid reading, the
proofs have been postponed to Appendix III. Only some key
points are given in this section.

Our approach exploits the rescaling property of IDCs,
inspired by the scale invariant case for whichQb

n

r (t) is equal
in distribution3 to Qr/bn(t/bn) -whereb < 1 andr < bn. We
start by making this precise. The recursion (25) between the
Qbr translates into a recursion between distribution functions:
set A(1)

r/b(t/b) := (1/b)
∫ t

0 Q
b
r(s)ds. Simple plug and play

yields:

3Notably, this property in distribution is lost in theexactpower law scaling
case of (18) studied in [21], [23] where a different approachis used.

Lemma 5: Let 0 < r ≤ b < 1. ThenA(1)
r is independent

of Qb and

Ar(t) =

∫ t

0

Qb(s)Q
b
r(s)ds (35)

= b

∫ t

0

Qb(s)d
[

A
(1)
r/b

(s

b

)]

. (36)

Iterating this idea we set forr < bn,

A
(n)
r/bn(t) :=

1

bn

∫ bnt

0

Qb
n

r (s)ds =

∫ t

0

Qb
n

r (bns)ds

=

∫ t

0

Q
(n)
r/bn(s)ds. (37)

Clearly,A(n) is again a cascading motion. Letm(n) denote
the control measure associated toQ(n)

r/bn(s). Then, by (37),

m(n)(Cr/bn(t)) = m(Cbn

r (bnt)) where in analogy to (25) we
setCbn

r (s) = Cr(s)\Cbn(s). As a consequence,dm(n)(t, r) =
g(n)(r)dtdr with

g(n)(r) := b2ng(bnr) · 1[0,1]. (38)

Indeed, simple substitution yieldsm(Cbn

r (0)) =
∫ bn

r ag(a)da =
∫ 1

r/bn b
na′bng(bna′)da′ = m(n)(Cr/bn(0))

which confirms (38). We may understandA(n)
r as a

zoom into the small scale details of the construction of
Ar. Indeed, in the scale invariant case (g(r) = c/r2),

we have g(n) = g, thus Qb
n

r (bn·) fdd
= Qr/bn(·) and

A
(n)
r (t) =

∫ t

0 Q
bn

rbn(bns)ds
fdd
= Ar(t).

If the integrandQb in (35) were constant over the interval
[0, t] we could pull it out of the integral and a scaling law
of moments would immediately follow. A measure for the
variation of the integrand which will prove useful is the
following (see Appendix III):

∆
(n)
b,q (t) :=

IE sup0≤s≤bnt

∣

∣

∣
Qb

n−1

bn (s)q −Qb
n−1

bn (0)q
∣

∣

∣

IE[Qb
n−1

bn (0)q]
. (39)

Thus, our main result which is established in the Ap-
pendix III reads as follows (see also Appendix IV for a direct
derivation forq = 2 in a specific case).

Theorem 1:
Fix q > 0, b ∈ (0, 1), ρ(·) and dm = g(r)dtdr.

(Moment condition) Assume thatAr converges inLq.
(Variational condition) Assume there existsν > 0 such that

∆
(n)
b,q (t) ≤ Cb,qt

ν for all n ∈ IIN
and all 0 < t ≤ 1.

(Speed condition) Assume thatg(n) converges.
Then there exist constantsCq andCq such that for anyt < 1

Cqt
q exp [−ϕ(q) m(Ct)] ≤

IEA(t)q (40)

≤ Cqt
q exp [−ϕ(q)m(Ct)] .

We emphasize that such a scaling behavior permits for the
first time to observe controlled departures from the standard
power law behavior over a continuous range of scales. Playing
with the form ofm(Ct), one may obtain a variety of situations.
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This is illustrated in sections III-E and V. Moreover, the
stationarity of increments has been maintained. Note that such
a non scale invariantapproach implies some specific technical
difficulties. Clearly, the assumptions simplify drastically in the
scale invariant case sinceg(n) = g for all n, since∆ does not
depend onn and since (34) holds.

Thespeed conditioncould be relaxed to require that theg(n)

are bounded; however, this would entail technical subtleties in
the proofs.

The variational conditiondisplays a rather technical aspect
but is actually satisfied for any normal and certain compound
Poisson cascadesaccording to the following corollary.

Corollary 2: Assume thatAr is either a normal IDC
motion or a Compound Poisson Cascade withIE[W q] < ∞.
Assume thatg(n) converges. Then, the variational condition
∆

(n)
b,q (t) ≤ Cb,qt

ν of Theorem 1 holds.
As a consequence, Theorem 1 can be applied to a wide variety
of infinitely divisible cascades, including normal cascades as
well as compound Poisson cascades withIE[W q] <∞.

The moment conditionwas dealt with in proposition 2 and
corollary 1 (for 1 < q ≤ 2). As a particular consequence
of the scaling law we find that the sufficient condition for
convergence inLq of corollary 1 is quasi tight:

Corollary 3: Let 1 < q ≤ 2. Assume that (40) holds. A
necessary condition for convergence ofAr(t) in Lq is

lim sup
n→∞

1

n
m(Ctk−n−1

o
) ≤ q − 1

ϕ(q)
log(1/ko) (41)

for all integersko ≥ 2 (recall thatϕ(q) < 0).
In the scale invariant case ofm(Cr) = −c log(r) this

necessary condition becomes

(q − 1) + cϕ(q) ≥ 0 (42)

and was observed in [23]. The proof of [23, Lem 3] generalizes
easily to establish corollary 3.

D. Discussion of Scaling Laws

We add a few remarks useful to applications (see also [27]
for more details). Let us start by pointing out that in the case
where g(n) actually converges, then its limit is necessarily
the fixed point of the transformationg(r) → b2g(b2r) which
is nothing but the scale invariant case. Thus, for such cases
the cascade will show only some sub-dominant yet visible
corrections to powerlaws (see examples of section III-E). Since
only boundedness of the tail ofg(n) is required, some further
flexibility is present.
Scaling of increments. The fact thatA(t) has stationary
increments andA(0) = 0 yields the useful scaling laws on
the incrementsδτA of A:

IE[δτA
q] ∼ Cqτ

q exp [−ϕ(q)m(Cτ )] , ∀τ ≤ 1, (43)

where ‘∼’ is used as a short notation for inequalities like
in (40); in practice, it turns out that both sides of the ‘∼’
are close to proportional forτ � 1. Moreover, one expects
that IE[δτA

q] ∼ τq for large τ � 1. This is in essence a
consequence of the Law of Large Numbers: while for smallτ
the noise is quite correlated, it decorrelates quickly asτ � 1.

Now remember that, inspired by previous works [3], [5], we
were a priori searching for non power law scaling of the form
exp[−ζ(q)n(τ)] as in (2). Rather, through our approach we
are naturally led to a mixture of a power law and a non power
law behavior of the formτq ·exp[−ϕ(q)m(Cτ )]. This result is
inherent to the use of an integral to defineA(t). On one hand,
the exp [−ϕ(q)m(Cτ )] term is related to the underlying IDC-
Noise. On the other hand, theτq term is due to the fact that
an IDC-Motion is obtained byintegrationof an IDC-Noise.
Locally averaged IDC noise. In many applications,Qr
would be the quantity of interest for modelling: dissipation
in turbulence, packet flows in Internet traffic, numbers of
transactions in finance...Then a classical analysis consists in
studying box averages over varying time lags. Thus, such an
analysis focuses onδτA/τ . In view of equation (40) obtained
in Theorem 1 or equivalently in view of (43), we are led to
consider the following process:

1

τ

∫ t+τ

t

Qr(s)ds =
1

τ
δτAr(t) =

1

τ
(Ar(t+τ)−Ar(t)), (44)

that can be read either as a locally averaged IDC-Noise or
as normalized increments of the IDC-Motion. From previous
sections, one has that1τ

∫ t+τ

t Qr(s) scales like:

IE

(

1

τ

∫ t+τ

t

Qr(s)ds

)q

∼ exp[−ϕ(q)m(Cτ )]. (45)

Thus, infinitely divisible cascades provide us with a versatile
family of models that allow for a variety of scale dependence.
Such a behavior is to be compared to (2) which shows that
the process1τ

∫ t+τ

t Qr(s) meets the requirement of separation
of the form exp[−ζ(q)n(τ)] between variablesτ and q.
Comparing to (12) as well, we emphasize again a fundamental
difference betweenr and τ . In (12), the dependence is onr
while in (45) the dependence is on the scale variableτ . This
latter case betrays a scaling phenomena while the former does
not. This difference is sometimes evoked in turbulence [35]
by making the distinction between thebarecascade (Qr here)
and thedressedcascade (δτAr/τ here).

Back to the original ideas of Mandelbrot [14], when he in-
troduced conservative cascades for the modeling of dissipation
in turbulence, one can readQr as the dissipation function as
measured at Kolmogorov lengthη (η then corresponds tor),
while 1

τ

∫ t+τ

t Qr(s) stands for the aggregated dissipation in
boxesof scale τ . The scaling behavior of this latter quan-
tity has been widely studied in experimental hydrodynamics
turbulence (see e.g., [40] for a review).
Continuous multiscaling. A key property of these scaling
behaviors (40) or (43) is that they hold continuously through
the scales, not only for a particular set of discrete scales.
Again, we put the emphasis as well on the fact that the
construction ofQr andA enables a full control of the way
the cascading process develops along scales and not only of
the multifractal behavior obtained in the limitτ → 0. As far
as applications and real world data modeling are concerned,
we believe that the control of the entire cascade process is
probably more relevant than that of the asymptotic behavior
asτ → 0 only.
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Numerical simulations. In numerical simulations (see sec-
tion V), one has to deal withAr rather than with the limiting
processA since the limit r → 0 remains out of reach.
However, for sufficiently smallr one has

IE[δτA
q
r] ∼ Cqτ

q exp [−ϕ(q)m(Cτ )] , ∀r ≤ τ ≤ 1. (46)

The equation above clearly underlines the different statusof
time-lag τ and resolutionr: r acts as a limitingresolution
below which scaling properties are not controlled whileτ
stands for thescaleat which the process is analysed.
Scale invariant case.Consistently, the power law behaviors
of the known scale invariant case [21]–[23] are recovered as
a corollary of Theorem 1 above:

Corollary 4: LetAr be an IDC motion with scale invariant
control measure (13). Assume thatAr converges inLq and that
∆

(0)
b,q(t) = O(tν) as t→ 0 for someν > 0. Then

Cqt
q+cϕ(q) ≤ IEA(t)q ≤ Cqt

q+cϕ(q) for t < 1. (47)

A further remarkable consequence follows from Kol-
mogorov’s criterion4.

Corollary 5: LetAr be an IDC motion with scale invariant
control measure. Then there exists a continuous version ofA
such that almost all paths have global Hölder regularityh for
all h < (q − 1 + cϕ(q))/q for all values ofq for which (47)
holds.

E. Non scale invariant examples

Since departures from power laws are one of the major goal
of the present work, we give here two precise examples of non
scale invariant measurem(Cr) for which we may verify the
assumption of Theorem 1 and corollary 2.

Example 6: Let us consider the following slight deviation
from the scale invariant case:

dm(t, r) = g(r)dtdr =
c

r2 (1 + 1/ log(δ/r))
dtdr. (48)

Note first that the densitiesg(n) converge to the scale invariant
densityc/r2. Second, note that applying (33) leads to the same
Lq-convergence criterium as in the scale invariant case, as it
should:

(q − 1) + cϕ(q) > 0. (49)

Moreover, it is a sufficient condition forLq-convergence
for all cascadesA(n)

r . Despite the close approximation by
the scale invariant cascade, this example spots non-powerlaw
progression of moments since

m(Cτ ) = −c log τ + c log

(

1 + log(δ)

1 + log(δ/τ)

)

. (50)

4Kolmogorov’s criterion (see for example [41]) : If{X(t) : t ∈ R} is a
stochastic process with values in a complete separable metric space(S, d),
and if there exists positive constantsβ, C, ε such that for alls, t ∈ R we
have

IEd(Xs, Xt)
β ≤ C|s − t|1+ε

then there exists a continuous version ofX. This version is Hölder continuous
of orderθ for eachθ < ε/β.

Example 7: This example is inspired from consideration
in the analysis of hydrodynamic turbulence [5] where a
dependence in1 − r−β in place of log r was proposed to
take into account the departures from power law behaviors
observed on empirical data. This choice results natural as it
provides a family of functions indexed by only one parameter
β which tends to the functionlog r as β → 0. Moreover, a
direct computation of the behavior ofIEA(t)2 is possible and
is reported in Appendix IV.

Modifying the scale invariant case, we consider the mea-
suresdm(t, r) = c/r2+βdtdr to achieve the proposed scaling.
The caseβ > 0 gives rise to a divergence asr → 0 so thatAr
does not converge to a meaningful processA(t). Indeed, (33)
yields nothing since the left-hand side is infinite.

When β < 0, g(n) vanishes identically in the limit. This
is related to the fact thatlimr→0m(Cr) is finite. As a con-
sequence, the limit ofAr (r → 0) poses no problem and its
multifractal behavior (in the limitτ → 0) results trivial. Let us
add thatg(n) converges to zero whenβ < 0 which simplifies
the assumptions of Theorem 1 and corollary 2. However, the
non power law behavior at scaleτ is controlled by

m(Cτ ) = c
1 − τ−β

−β (51)

and remains interesting in a wide range of scalesτ < 1. This
example is of particular interest and will be extensively used
in Section V devoted to illustrations (see also Appendix IV).
The correction terms to the powerlaw found in these examples
may be subtle, yet they reflect true scaling and cannot be
subsumed by a constant error bound (see Section V). Up to
our knowledge, these are the first cascades which deviate from
pure powerlaw scaling.

IV. I NFINITELY DIVISIBLE CASCADING RANDOM WALK

By construction,A is a non-decreasing process and this can
be seen as a severe limitation for the modeling of real world
data. As it was already proposed in the scale invariant case
[21]–[23], following an idea which goes back to Mandelbrot
[42] and to theBrownian motion in multifractal time, one
can define a process with stationary increments, continuous
scale invariance, prescribed departures from power laws and
prescribed scaling exponents as well as positive and negative
fluctuations: theInfinitely Divisible Cascading Random Walk,
VH .

A. Definition

Definition 3.
Let A be an IDC Motion, andBH the fractional Brownian
motion with Hurst parameterH , BH being independent ofA.
The process (see Figure 3)

VH(t) = BH(A(t)), t ∈ R
+, (52)

is called anInfinitely Divisible Cascading random walk(IDC
random walk).

For practical use in simulations, we define

VH,r(t) = BH(Ar(t)). (53)



IEEE TRANSACTIONS ON INFORMATION THEORY 10

B. Scaling properties

Using the self-similarity ofBH and the independence
betweenBH andA, one finds that

IE[|VH(t)|q] = IEIE[|BH(A(t))|q
∣

∣A] (54)

= IE[|B(1)|q] · IE[|A(t)|qH ]. (55)

As an immediate consequence we get:

Theorem 2: Under the assumptions of Theorem 1, there
exist constantsCq andCq such that for anyt < 1,

Cqt
qH exp [−ϕ(qH) m(Ct)] ≤

IE[|VH(t)|q] (56)

≤ Cqt
qH exp [−ϕ(qH)m(Ct)] .

Theorem 2 calls for comments related to those concerning
Theorem 1 (Section III-C). In particular, since bothBH and
A have stationary increments, so doesVH . As a consequence,
for τ < 1, incrementsδτVH of VH obey5:

IE[δτV
q
H ] ∼ Cqτ

qH exp [−ϕ(qH)m(Cτ )] . (57)

For τ > 1, it reduces toIE[δτV
q
H ] ∼ Cqτ

qH .
Thus, IDC-Random Walks are processes with stationary

increments that display non power law multiscaling prescribed
a priori over a continuous range of scales as well as positive
and negative fluctuations, see figure 3.
In the scale invariant case for which results were already
obtained in [21]–[23], (56) consistently reduces to

Cqt
qH+cϕ(qH) ≤ IE|VH(t)|q ≤ Cqt

qH+cϕ(qH). (58)

C. The case of the Brownian motion (H=1/2)

This section focuses on the simplest case, namely Brownian
motion with H = 1/2, and introduces a process meant to
mimicV1/2. The processZ is defined by the limiting stochastic
integral

Z(t) = lim
r→0

Zr(t), (59)

where

Zr(t) =

∫ t

0

√

Qr(s)dB(s), (60)

whenever it exists, with
√

Qr(s)dB(s) the correspondingIDC
Gaussian noise; Qr(s) andB(s) are independent. In contrast
with Ar(t) obtained from a deterministic integral, the process
Zr(t) appears as a stochastic integral ofQr(t). The process
Zr(t) is indeed arandom walk. In the scale invariant case,
it corresponds to theMultifractal Random Walkintroduced in
[19].

Clearly, Zr(t) and V1/2,r(t) do not have equal paths.
Consider all paths for whichQr(s) takes a constant value
over a small interval, say over[0, ε]; note that this happens
with positive probability in our framework. SettingC = Qr(0)
for short, we find fort ∈ [0, ε] that V1/2,r(t) = B(Ct) while
Zr(t) =

√
CB(t). While these parts of the paths are obviously

5Again, ’∼’ is used as a short notation for inequalities like in (40) and(56).

different, they are in fact still equal in f.d.d. (conditioned on
the constantQr(s))6.

We establish the following proposition in the Appendix V.
Proposition 3: For any r ∈ [0, 1], processesV1/2,r(t) =

B(Ar(t)) and Zr(t) are identical in the sense of fi-
nite dimensional distribution. Furthermore,IEZr(s)Zr(t) =
IEV1/2,r(s)V1/2,r(t) = σ2 min(s, t).

Note that a definition of a processZH,r generalizing (60)
to the caseH 6= 1/2 rises the problem of a relevant definition
of the stochastic integration with respect to the fractional
Brownian motion which is up to our knowledge not properly
solved yet in the general case.

V. I LLUSTRATION

This section presents results obtained from numerical simu-
lations of infinitely divisible cascading processes respectively
in the exact scale invariant case and in a non scale invariant
case. We know from Theorems 1 and 2 that the exact scale
invariant case yields powerlaw behaviors of the moments of
the increments ofA(t) and VH(t) while departures from
powerlaws are expected in the non scale invariant case. This
is illustrated below forcompound Poisson cascadesas well
as for log Normal cascades. Algorithms used to produce the
samples shown here are detailed in Section VI.

A. Parameters of numerical simulations

The two following sets of infinitely divisible cascading
processes possess the same general characteristics apart from
their control measuredm(t, r): dm(t, r) = cdtdr/r2 in the
scale invariant case,c = 3; dm(t, r) = cdtdr/r2+β with
β = −0.4 in the non scale invariant case,c = 20 (Example 2
of Section III-E). These choices7 lead respectively tom(Cτ ) =
−c log τ andm(Cτ ) = c(1 − τ−β)/(−β) for τ ≤ 1. Only
scalesτ ≤ 1 are influenced bym(Cτ ). Note that the scale
invariant situation is recovered from the non scale invariant
one by taking the limitβ → 0.

Infinitely divisible cascading processes presented below
are Compound Poisson Cascades (see (4) and Section II-D).
Distribution F of logWi is a log-Normal distribution with
moment generating functioñF (q) = IE[W q

i ] = exp(µq +
σ2q2/2) so that

ϕ(q) = c(1−exp(µq+σ2q2/2))−cq(1−exp(µ+σ2/2)) (61)

where (µ;σ2) = (−0.1; 0.05). Hurst exponentH of the
fractional Brownian motion used to buildVH(t) has been set
to H = 1/3.

Many realizations are necessary to ensure statistical con-
vergence of the (rudimentary) analysis procedure carried out
here: we used about 1000 realizations of215 points corre-
sponding to a total amount of about3.107 points. In both
cases, aτq (resp. τqH ) term always dominates the behav-
iors of IE[δτA

q], see (40) (resp.IE[δτV
q], see (56)). As a

6Since Ito integrals are defined viaL2 approximation of the integrand by
step functions, this argument bears validity beyond our piecewise constant
cascadesQ.

7The constantc has been set toc = 3 in the scale invariant case and
c = 20 in the non scale invariant case in order to respect theL2-convergence
criterion of Proposition 1.
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Fig. 4. Compound Poisson Cascades: Scale invariant cascades show power laws: (a) log IE[(δτ A/τ)2] compared tocϕ(2) log τ + Cte. (b)
log IE[(δτ V/τH)2] compared tocϕ(2H) log τ + Cte. Non scale invariant cascade deviates from power laws: (c)log IE[(δτ A/τ)2] compared to
−ϕ(2)m(Cτ ) + Cte. (d) log IE[(δτ V/τH)2] compared to−ϕ(2H)m(Cτ ) + Cte.
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Fig. 6. Compound Poisson Cascades. (Left)ϕ(q) estimated from linear
regressions in log-log diagrams ofIE[(δτ A/τ)q ] vs m(Cτ ). (Right) ϕ(qH)
estimated from linear regressions in diagrams ofIE[(δτ V/τH)q ] vs m(Cτ ).

consequence, the performed analysis focuses on the scaling
behaviors ofIE[(δτA/τ)

q] ∼ exp[−ϕ(q)m(Cτ )], respectively
IE[(δτV/τ

H)q] ∼ exp[−ϕ(qH)m(Cτ )].
Remark: Figure 5 shows similar results for log Normal

cascades withσ2 = 0.2 and the same choice fordm(t, r) as
above.

B. Scale invariant cascade

The well known scale invariant case serves as a reference
to emphasize what is obtained in the non scale invariant case.
As expected, the moments of the increments ofA(t) and
VH(t) obey power laws in a large range of scalesτ < 1.
Indeed, Figure 4(a) shows thatIE[(δτA/τ)

q ] behaves like
exp[−ϕ(q)m(Cτ )] = τcϕ(q). Exponentsϕ(q) (resp.ϕ(qH))
estimated by linear regressions in log-log diagrams are con-
sistent with expected theoretical values, see Figure 6(left).
Similarly, Figure 4(b) shows thatIE[(δτV/τ

H)q] behaves like
τcϕ(qH). Estimated exponents are consistent with expected
theoretical values, see Figure 6(right).

C. Non scale invariant cascade

We now concentrate on the choicem(Cτ ) = c(1 −
τ−β)/(−β), for β = −0.4. Therefore, departures from pow-
erlaw behaviors corresponding to theexp[−ϕ(q)m(Cτ )] term
in (40) are expected. Figures 4(c) & (d) show that such
departures are observed on bothA(t) andVH(t). Compare to
Figures 4(a) & (b) corresponding to the scale invariant case.
It is remarkable that these departures are accurately controlled
for τ < 1 by the precise form ofm(Cτ ) 6= −c log τ . These
numerical observations are perfectly consistent with the results
of Theorems 1 and 2 (see also a direct derivation of the
scaling behavior forq = 2 in Appendix IV). Again, exponents
ϕ(q) (resp.ϕ(qH)) can be estimated from linear regressions
in log IE[(δτA/τ)

q ] vs m(Cτ ) (resp. log IE[(δτV/τ
H)q] vs

m(Cτ )) diagrams –see Figure 6.
In this precise case, departures from powerlaw behaviors are

even directly (slightly) visible without correcting theτq term
in IE[δτA

q]. For instance, Figure 7 shows thatlog IE[δτA
2]

is close to but does not exactly fit a linear function of
log τ for τ < 1. Note that the importance of this departure
from a powerlaw behavior depends on the precise orderq
of the considered momentIE[δτA

q]. Indeed, this effect is
proportional toϕ(q)m(Cτ ) in a log-log diagram. For instance,
whenq = 1, no departure will ever be observed sinceϕ(1) = 0
by definition.
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Fig. 7. (Left) Scale invariant case obeys a very linear behaviorthat
denotes an exact power law scaling.(Right) Non scale invariant case slightly
deviates from a powerlaw behavior significantly:it is even directly visible
in a log IE[(δτ A/τ)2] vs log τ diagram. log IE[(δτ A/τ)2] vs log τ does
not exhibit a linear behavior even though it looks close to a linear behavior
(compare (left) & (right)).

At this point, let us emphasize that, up to our knowledge,
this is the first example of a multiplicative cascade displaying
controlled non power law behaviors up to a large range of
scales (four decades on Figure 4).

VI. A LGORITHMS FOR PRACTICAL SYNTHESIS

This section is devoted to the key points entering the
practical algorithms aiming at the simulation of the IDC-
Noise, Motion and Random Walk. The corresponding
MATLAB routines have been developed and used to produce
the illustrations of Section V. They are freely available
and documented on the web pages of the authors or upon
request. Despite theoretical similarities, there are important
practical differences between the specific case of Compound
Poisson Cascades and the general case of Infinitely Divisible
Cascades8. They are presented separately in Sections VI-A
& VI-B for the synthesis of the IDC-Noise and IDC-Motion.
Then Section VI-C explains how to obtain an IDC Random
Walk VH,r from an IDC MotionAr(t).

Though the defined process are continuous-time processes,
algorithms output samples with a uniform sampling rate
∆t � 1. Let [0, T ], with T > 1 denote the interval over
which processes are to be produced. With our definitions,
the scaling properties are prescribed in the range of scales
r ≤ τ ≤ 1. Using the sampling period as a time reference, the
characteristic scales of the constructions are:r/∆t, 1/∆t and
T/∆t.

A. Simulation of Compound Poisson Cascades

As explained in Section II-D, Compound Poisson Cascades
are built from two ingredients: a planar Poisson point process
{(ti, ri)} with density dm(t, r) in P+ and i.i.d. random
multipliersWi with logWi distributed byF . The planar point
process provides us with a natural sampling of the time-scale
plane (see figure 8(left)), which makes things simple. Let the
trapezoidΘ = {(t′, r′) : r ≤ r′ ≤ 1,−r′/2 ≤ t′ ≤ T + r′/2}.

The synthesis algorithm consists of the following steps for
given resolutionr and durationT .

8Recall that not all infinitely divisible distributions are compound Poisson
distributions.
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Fig. 8. (left) Compound Poisson Cascadesare built on a Poisson point process{(ti, ri)} and random i.i.d. multipliersWi. (right) Infinitely Divisible
Cascadesnecessitate an adapted discretization of the time-scale plane: schema of the different triangular (H, N) and lozenge (�) subsets that contribute to
Qr(tk). This schematic vision is translated in the form of the matrix Ψ(tk).

1) Determine the numberNp of points (and multipliers)
that will be used to computeQr(t) in the interval[0, T ]:
it is a Poisson random variable with parameterm(Θ);

2) SelectNp random points(ti, ri) located in the trapezoid
Θ, according to densitydm(t, r)9;

3) SelectNp i.i.d. random multipliersWi such thatlogWi

are distributed byF ;
4) For each time positiont ∈ {tk = k∆t, 0 ≤ k ≤ T/∆t},

set

Qr(t) = exp[(1 − IEW )m(Cr(t))] ·
∏

(ti,ri)∈Cr(t)

Wi;

5) The approximate versionAr(t) of an IDC motionA(t)
is obtained as the discrete time integral ofQr(t):

Ar(t) =
∑

0≤k≤t/∆t

Qr(tk) · ∆t. (62)

A key feature of this algorithm is that it is easy to implement
and has a low computational cost. Little modification is
necessary to get a causal version, in the spirit of the recursive
algorithm proposed for non-CPC infinitely divisible cascades
below.

B. Simulation of Infinitely Divisible Cascades

Let us now turn to the simulation of (non compound Pois-
son) infinitely divisible cascades like, e.g., the Normal cascade.
The construction is no longer based on a discrete random
point process but rather on a continuous and independently
scattered random measureM on the time-scale planeP+:
no natural sampling appears. A relevant sampling of the
P+ must therefore be chosen, immediately rising the issues
of computational cost and available memory. To tackle this
problem, a causal recursive algorithm is proposed in order to
simulateQr(t) for each{tk = k∆t, k ∈ N}.

Figure 8(right) gives an intuitive picture of our algorithm.
With little restriction, the sampling period is chosen as the

9The non-uniform distributionrg(r) of the ri is achieved by a change of
variable from a uniformly distributed random variable.

inverse of an integer∆t = 1/λt while the resolutionr is
chosen asr = λr∆t, with λt, λr ∈ N

∗. Therefore, a natural
discretization of the planeP+ appears as a combination of
downwards trianglesH (with random measure denoted byα),
lozenges� (with measure denoted byβ) and upwards triangles
N (with measure denoted byγ)–see figure 8(right). At each
time tk, the terms that contribute toQr(tk) can be gathered
in the following triangular matrixΨ(tk):

Ψ(tk) =



















α1 . . . . . . . . . . . . . . . αλt

β1,1 . . . . . . . . . . . . β1,ν1

. . .
...

0 βν0,ν0 . . . . . . βν0,ν1
γ1 . . . γλr

0λr−1



















(63)
whereν0 = λt − λr − 1 and ν1 = ν0 + λr = λt − 1 > ν0;
0λr−1 denote a zero square matrix of sizeλr − 1. Ψ(tk) is a
λt × λt square matrix. We denote byD(tk) its diagonal and
Cλt(tk) its last column:

{

Cλt(tk) = (αλt , β1,ν1 , . . . , βν0,ν1 , γλr , 0λr−1)
D(tk) = (α1, β1,1, . . . , βν0,ν0 , γ1, 0λr−1)

For given infinitely divisible distributionG (with moment
generating functionG̃(q) = e−ρ(q)) and control measure
dm(t, r), the simulation consists of the following steps:

1) Computem(H) andm(N) as well as the variousm(�)
depending on the position of the lozenge;

2) Simulate theα = M(H), random variables distributed
according toGm(H) (with moment generating function
G̃(q) = e−ρ(q)m(H), see Appendix I); do the same with
β = M(�) and γ = M(N) distributed byGm(�) and
Gm(N) respectively;

3) Initialize Ψ(t = 0), and set Qr(0) =
exp(ρ(1)m(Cr)) exp

∑

i,j Ψi,j(0);
4) Recursively obtainΨ(tk+1) from Ψ(tk) through the

following procedure:
a) eliminate diagonalD(tk),
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b) translate all coefficients ofΨ(tk) one column to
the left,

c) simulate a new last columnCλt(tk+1), and insert
it to form Ψ(tk+1),

d) then getQr(tk+1) using

Qr(tk+1) = Qr(tk) · exp

(

∑

i

Cλt,i(tk+1) −
∑

i

Di(tk)

)

.

5) Repeat untiltk = T (that is as long as needed, with no
limitation on the value ofT ).

6) IDC Motion Ar is obtained by simple integration (as
in (62)):

Ar(t) =
∑

0≤k≤t/∆t

Qr(tk) · ∆t. (64)

The matrix Ψ(tk) plays the role of a ”memory” of the
process. In a way, itpropagatesthe correlation structure of
processQr. This method of simulation results in a causal
construction. The adaptation of this algorithm to Compound
Poisson Cascades is left to the reader.

C. Simulation of an IDC Random Walk

Once an IDC MotionAr(t) has been simulated, one obtains
VH,r(t) in two steps:

1) Simulate a fractional Brownian motionBH with Hurst
parameterH thanks to the fast circulating matrix method
[43], [44]. This fractional Brownian motion is oversam-
pled by a factorp compared toAr, i.e., it is synthetized
on a grid t′j with a sampling rate∆t′ = ∆t/p (for
instancep = 16);

2) Set VH,r(tk) = BH(t′k) where t′k is such that|t′k −
Ar(tk)| = inft′j |t′j −Ar(tk)|.

The processesQr, Ar and VH,r shown in previous sections
have been produced with the algorithms described here.

VII. C ONCLUSIONS ANDPERSPECTIVES

In the present work, we proposed the definitions of
continuous-time processes that exhibit controlled continuous
multiscaling behavior. Mostly, scaling laws are continuous
through the scales and possible departures from a pure power
law behavior are taken into account. Up to our knowledge
and despite some limitations, Infinitely Divisible Cascading
processes are the first continuous multiplicative cascadesdis-
playing controlled non power law scaling behaviors. More-
over, algorithms for practical synthesis are given. MATLAB

functions as well as a companion paper [27] that puts the
emphasis on more applied aspects are available from our web
pages.

The theoretical study of the scaling properties of these
processes brought better understanding and new intuitions
about the subtle interplay between cascading mechanisms and
scaling phenomena. Aiming at a better localized control in the
time-scale plane, we are currently elaborating a variationon
this construction of the form

Qr(t) =
exp

∫

f
(

t−t′

r′

)

dM(t′, r′)

IE exp
∫

f
(

t−t′

r′

)

dM(t′, r′)
, (65)

where f(t) is some bounded support function. Note that
Definition 1 is recovered for the choicef = 1[−1/2,1/2].
Potential improvements of such a generalized formulation are
under study.

In practice, Infinitely Divisible Cascading processes could
relevantly and efficiently replace the usual binomial cascades
which remain the most commonly used tools in applications.
We put the emphasis on the fact that the ability to account
for departures from exact power laws is a major practical
improvement for the modelling of real empirical data.

The use of such processes to calibrate analysis and esti-
mation tools should be of major benefit. We are currently
investigating the performances of the most commonly used
analysis tools thanks to those reference processes [45]. We
are also designing new estimators for non power law scaling.

Applications to hydrodynamic turbulence and to computer
network traffic are under development.

APPENDIX I
INFINITELY DIVISIBLE DISTRIBUTIONS

Let us recall some basics on infinitely divisible probability
distributions or laws. We denote the set of strictly positive
integers byN∗.
Definition
A distributionG is called infinitely divisible if for alln ∈ N

∗

there exists a distributionGn such thatG equals then-fold
convolution ofGn with itself, denoted as(Gn)n?.

In other words, the distribution of a random variableS is
infinitely divisible if and only if for alln ∈ N

∗ the variableS
can be written in law as the sum ofn i.i.d. variables:

S
law
= Y1,n + ...+ Yn,n.

Clearly, the distribution ofYi,n is Gn from the above defini-
tion. Again in different words, a distributionG with charac-
teristic functione−ψ is infinitely divisible if and only if for
all n ∈ N

∗ e−ψ/n is again a characteristic function. Moreover,
one has:
Theorem (see Feller [32, p.432])
Every characteristic functionIE[eiqX ] of an infinitely divisible
law is necessarily of the formexp(−ψ(·)). If e−ψ is the
characteristic function of an infinitely divisible distributionG,
then for all s > 0, e−sψ is the characteristic function of an
infinitely divisible distributionGs.

Note that the same theorem can be written for the moment
generating functioñG(q) = IE[eqX ] = e−ρ(q) for values ofq
such that it exists.

APPENDIX II
INDEPENDENTLY SCATTERED RANDOM MEASURES

To introduce random measures on the upper half plane
P+ = {(t, r) : t ∈ R, r > 0} the following notion is useful:
Definition
An independently scattered (Borel) random measureM on
P+ is a measure-valued process defined on the Borel sets of
P+ such that for all disjoint setsE1 and E2,

• M(E1) andM(E2) are independent random variables,
• M(E1 ∪ E2) = M(E1) +M(E2).
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The additivity property makes it natural to construct such
random measures in an infinitely divisible framework. Lever-
aging Feller’s theorem from the previous section and following
Rajput & Rosinski [46] and Samorodnitsky & Taqqu [34] one
defines:
Definition
Let G be an infinitely divisible distribution with moment

generating functionG̃ = e−ρ. Let dm(t, r) be a positive
deterministic measure onP+. Then, a measureM with the
two properties listed below is calledrandom measure with
control measurem and generatorG:

• M is an independently scattered Borel measure onP+;
• for any Borel setE of P+ the random variableM(E)

distributed asGm(E), i.e.,

IE[exp [qM(E)]] = exp [−ρ(q)m(E)] . (66)

If the choice of the infinitely divisible lawG is obvious from
the context, we may callM simply infinitely divisible measure
with control measurem. Prominent examples are given in the
text, such as Normal or compound Poisson distributions for
instance (see Section II-D).

APPENDIX III
REMAINING PROOFS OFSECTION III-C

Lemma 6: Let 0 < r ≤ bn < 1. ThenA(n)
r is independent

of Qbn , thus also ofQb
n−1

bn and

A
(n−1)
r/bn−1(t/b

n−1) =
b

bn

∫ t

0

Qb
n−1

bn (s)Qb
n

r (s)ds

= b

∫ t

0

Qb
n−1

bn (s)d
[

A
(n)
r/bn

( s

bn

)]

. (67)

Proof
Simply plug the recursion (25) into the definition (37) ofA(n).

♦

Lemma 7: Fix q > 0. Let 0 < r ≤ bn < 1 and t > 0.
Then,

IE|A(n−1)
r/bn−1(t/b

n−1)|q (68)

= bq · IE[Qb
n−1

bn (0)q] · IE[A
(n)
r/bn(t/bn)q] · (1 + ε(n)

r (t/bn)).

The error termε(n)
r is bounded as:|ε(n)

r (s)| ≤ ∆
(n)
b,q (s).

Proof
We will be using the fact10 (see [47]) that for any positive
measureµ and any positiveq
∣

∣

∣

∣

(
∫

I

x(s)dµ(s)

)q

− C

∣

∣

∣

∣

≤ sup
s∈I

|x(s)qµ(I)q − C|. (69)

Applying lemma 6, then (69) withI = [0, t] to the measure
µ induced byA(n)

r/bn(·/bn), and finally using (12) and (35) we

10Indeed, since
R

I x(s)dµ(s) ≤ sups(x(s)µ(I)) we have
(
R

I
x(s)dµ(s))q ≤ sups∈I(x(s)qµ(I)q). Now subtract C from both

sides. Similarly, C − (
R

I
x(s)dµ(s))q ≤ C − infs(x(s)qµ(I)q) =

sup(C − x(s)qµ(I)q).

may write the following
∣

∣

∣
A

(n−1)
r/bn−1(t/b

n−1)q − bqQb
n−1

bn (0)qA
(n)
r/bn(t/bn)q

∣

∣

∣

=

∣

∣

∣

∣

∣

(

b

∫ t

0

Qb
n−1

bn (s)d[A
(n)
r/bn(s/bn)]

)q

−bq ·Qbn−1

bn (0)q ·A(n)
r/bn(t/bn)q

∣

∣

∣

≤ sup
0≤s≤t

∣

∣

∣
bqQb

n−1

bn (s)qA
(n)
r/bn(t/bn)q

−bqQbn−1

bn (0)qA
(n)
r/bn(t/bn)q

∣

∣

∣

= bq ·A(n)
r/bn(t/bn)q · sup

0≤s≤t

∣

∣

∣
Qb

n−1

bn (s)q −Qb
n−1

bn (0)q
∣

∣

∣
. (70)

Using |IEX − IEY | ≤ IE|X − Y | and the definition of∆(n)
b,q

the claim follows. ♦

Proof of Theorem 1.
In order to establish theorem 1 we would like to iterate the
recursion (68)n times keepingb fixed. Thus, we will apply
the recursion successively witht/bk to the cascadesA(k)

r

introduced in (37), fork = 1, . . . , n. According to lemma 7
we find (providedr < bn)

IEAr(t)
q (71)

= IE[A
(n)
r/bn(t/bn)q] ·

n
∏

k=1

bq · IE[Qb
k−1

bk (0)q](1 + ε(k)r (t/bk))

= bnqIE[Qbn(0)q] · IE[A
(n)
r/bn(t/bn)q] ·

n
∏

k=1

(1 + ε(k)r (t/bk)).

Here, we used mutual independence of theQb
k−1

bk (25) to
collect the moments.

Let us first consider the caset = bn. Fixingn, lettingr → 0
and usingLq-convergence yields

IEA(bn)q (72)

= bnqIE[Qbn(0)q] · IE[A(n)(1)q] ·
n
∏

k=1

(1 + ε(k)(bn−k)).

Here, the error terms are obtained by taking limits in (68).
Listing them in reverse order for convenience, they read as

ε(n−i)(bi) =
IE[A(n−i−1)(bi+1)q]

bqIE[Qb
n−i−1

bn−i (0)q]IE[A(n−i)(bi)q]
− 1. (73)

Note that for fixed i each termε(n−i)(bi) converges as
(n→ ∞). Indeed, the finite dimensional distributions ofA(n)

depend only and continuously onm(n)(Cr(t)∩Cr(s)) [23]; but
m(n) converges by assumption. In particular, ifm(n) converges
to the trivial zero-measure, thenQb

n−i−1

bn−i andA(n) converge
in distribution to the constant1.

In addition, Lemma 7 |ε(n−i)(bi)| ≤ C(bν)i. Since
the sum

∑

i(b
ν)i converges absolutely, the product

∏n−1
i=0 (1 + ε(n−i)(bi)) will converge by bounded convergence

to a finite, non-zero limit which can be consumed in the
constants.

Similarly, the termsIE[A(n)(1)q] converge and can be
consumed in the constants.
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Fig. 9. Definition of L, B and R.

At last, the bounds have to be extended for allt ∈
[0, 1]. SinceAqr(·) is a non-decreasing process, it is an easy
exercise to show that a correction factor for the constant
bound large enough isbq supn IE[Qb

n−1

bn (0)q]. However, simi-
larly as beforeIE[Qb

n−1

bn (0)q] = exp[−ϕ(q)m(Cbn−1

bn (0))] =
exp[−ϕ(q)m(n−1)(Cb(0))] converges inn, this factor is
bounded. ♦

Proof of Corollary 2.
We establish corollary 2 via three lemmas. The first result is
general and simplifies∆(n)

b,q by separating independent from

dependent parts ofM(Cbn−1

bn (u)) andM(Cbn−1

bn (0)). To this
end we introduce the following parallelepiped as subsets of
the time-scale strip (see figure 9 forn = 1):

L(u, v) = {(s, r) : bn ≤ r ≤ bn−1, −r + u ≤ s < −r + v},
B(t) = Cb(t) ∩ Cb(0) (74)

= {(s, r) : bn ≤ r ≤ bn−1, −r + t ≤ s ≤ r},
R(u, v) = {(s, r) : bn ≤ r ≤ bn−1, r + u ≤ s < r + v}.

Lemma 8: For 0 ≤ t ≤ 1

∆
(n)
b,q (t) ≤ exp[ρ(q)m(L(0, tbn))]

× IE

[

eqM(L(0,tbn)) sup
0≤u≤tbn

∣

∣

∣

∣

eqM(R(0,u))

eqM(L(0,u))
− 1

∣

∣

∣

∣

]

. (75)

Proof
First, we cancel the normalization terms ofQ which appear
in ∆

(n)
b,q :

∆
(n)
b,q (t) = (76)

IE sup0≤u≤tbn | exp[qM(Cbn−1

bn (u))] − exp[qM(Cbn−1

bn (0))]|
IE[exp[qM(Cbn−1

bn (0))]]
.

Next, checking the constraints on the variables in (74)
one verifies quickly the following decomposition of a cone
Cbn−1

bn (u) into disjoint sets which is valid foru ∈ [0, tbn] and
for t ≤ 1 (see figure 9 forn = 1):

Cbn−1

bn (u) = L(u, tbn) ∪ B(tbn) ∪R(0, u). (77)

As a particular case we haveCbn−1

bn (0) = L(0, tbn) ∪ B(tbn).
Thus:

∆
(n)
b,q (t) =

IE[exp[qM(B(tbn))]]

IE[exp[qM(Cbn−1

bn (0))]]

× IE
[

sup
0≤u≤tbn

∣

∣exp[qM(L(u, tbn) ∪R(0, u))]

− exp[qM(L(0, tbn))]
∣

∣

]

(78)

Here, we used that the termeqM(B(tbn)) is statistically inde-
pendent of the other terms in the enumerator. We note that

IE[eqM(B)]

IE[eqM(Cbn−1

bn (0))]
= exp[−ρ(q)(m(B) −m(Cbn−1

bn (0)))]

= exp[ρ(q)m(L(0, tbn))]. (79)

Finally, sinceL(u, v)∪L(v, w) = L(u,w) with disjoint union
wheneveru ≤ v ≤ w, we find (75). ♦

It remains to bound the second term in (75) which we
achieve in the special cases of CPC and log-normal cascades.
Now the idea is to show that witht very small and thusu
small, the control measuresm(R(0, u)) andm(L(0, u)) are
very small, thus the corresponding random variables are small
with high probability and thuseqM(R(0,u)) and eqM(L(0,u))

are both close to1. Thus their quotient is close to one and
the contribution to the last term in (75) is small with large
probability.
Compound Poisson Cascades.As a matter of fact, that quotient
is exactly equal to1 with large probability in the CPC case
which is the main ingredient to the next result. The log-normal
case is somewhat more intricate.

Lemma 9: Fix q > 0 and n ∈ IIN. Let 0 < t ≤ 1. If
the weightsW of a Compound Poisson Cascade have finite
q-th moments, then there exist finite constantsC(n) (see (75)
and (85)) such that

∆
(n)
b,q (t) ≤ t · C(n). (80)

Assume in addition that
∫ 1

b g
(n)(r)dr = bn

∫ bn

bn+1 g(s)ds is
bounded. ThenC(n) ≤ C for some constantC.

Proof
Since eqM(R(0,u)) = eqM(L(0,u)) with high probability, the
following crude bound will suffice to bound the error term.
To this end denote byN(E) the number of Poisson Points
falling in some setE and define

L(E) :=
∏

(ti,ri)∈E

(W q
i + 1). (81)

By standard computation (L is in essence a CPC but with new
weights, compare Example 4) we find, using thatm(E) =
IE[N(E)],

IE[L(E)] =

∞
∑

k=0

m(E)k

k!
e−m(E)IE[W q + 1]k

= exp[IE[W q]m(E)] (82)

which is finite sinceW has a finiteq-th moment. Consider
the set

E := L(0, tbn) ∪R(0, tbn). (83)
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SinceE contains all Poisson Points which may possibly appear
in the supremum in (75) (see also (78)) and sinceW q + 1 ≥
max(1,W q) we find immediately using|a− b| ≤ |a| + |b|,

sup
0≤u≤tbn

∣

∣

∣
exp[qM(L(u, tbn) ∪R(0, u))] − exp[qM(L(0, tbn))]

∣

∣

∣

= sup
0≤u≤tbn

∣

∣

∣

∣

∣

∣

∏

L(u,tbn)∪R(0,u)

Wi −
∏

L(0,tbn)

Wi

∣

∣

∣

∣

∣

∣

≤ 2L(E), (84)

in particular,∆(n)
b,q (t) < ∞. To advance to a more accurate

estimate let us note that the supremum in (84) actually
vanishes whenever no Poisson Points fall inE , i.e., whenever
N(E) = 0. But the probability of this happening isP [N(E) =
0] = exp(−m(E)). Since1 − e−a ≤ a,

IE

[

eqM(L(0,tbn)) sup
0≤u≤tbn

∣

∣

∣

∣

eqM(R(0,u))

eqM(L(0,u))
− 1

∣

∣

∣

∣

]

(85)

≤ Pr[N(E) 6= 0] · IE[2L(E)] = m(E) · 2 exp[IE[W q]m(E)].

Since

m(E) = 2m(L(0, tbn)) = 2tbn
∫ bn−1

bn

g(r)dr (86)

the claims follow with lemma 8. ♦

Normal Cascades.Finally, Theorem 1 applies to any normal
cascade as we show now. This will complete the proof of
corollary 2.

Lemma 10: Fix q > 0. Let 0 < t ≤ 1. For any log-normal
IDC there exist finite constantsC(n) such that

∆
(n)
b,q (t) ≤

√
t · C(n). (87)

Assume in addition that
∫ 1

b
g(n)(r)dr (38) are bounded for all

n, thenC(n) remain bounded asn→ ∞.

Proof
Let us recall thatρ(q) = −qµ − q2σ2/2, i.e., M(E) is
N (m(E)µ,m(E)σ2).

Step 1: Consider the following processes
{

Xs := qM(L(0, s)) − qm(L(0, s))µ
Ys := qM(R(0, s)) − qm(R(0, s))µ.

(88)

Both are Gaussian processes with independent stationary in-
crements of zero mean; thus they form Brownian motions
which are unique up to a multiplicative scalar which can be
set through the variance at times = 1. In particular, they are
thus statistically self-similar, i.e.,Xas and

√
aXs are equal in

the sense of finite dimensional distributions. Note in addition
that {Xs}s≤tbn and {Ys}s≤tbn are independent sinceM is
randomly scattered.

SetSX(s) = sup0≤u≤t |Xu| andSY (s) similarly. Consid-
ering continuous versions of the motion only we are lead to

SX(s) = sup
0≤u≤s

|Xu| fdd
=

√
s · sup

0≤u≤1
|Xu| =

√
s ·SX(1) (89)

with equality in the sense of finite dimensional distributions.
From Leadbetter [48, Lemma 12.2.1, p. 219] we borrow the

following fact: SinceXs and−Xs are normal processes with
IE[Xs] = 0 for all s, IE[X2

0 ] = 0 andIE[(Xt−Xs)
2] = ξ2|t−s|

we have

P [ sup
0≤s≤1

|Xs| > x] = P [SX(1) > x] ≤ 8 exp(− c

ξ2
x2) (90)

where c is a real constant which does not depend on any
statistics ofXs and where

ξ2 := IE[X(1)2] = q2var[M(L(0, 1))2] (91)

= q2σ2m(L(0, 1)).

The same bound (90) with the sameξ holds for Ys since
IE[Y (1)2] = σ2m(R(0, 1)) = ξ2.

Step 2: For simplicity of notation we assume heren = 0;
more generally, everyt has to be replaced bytbn. Setting

I := IE
[

eXt · sup
0≤s≤t

|eYs−Xs − 1|
∣

∣SX(t) ≥ 1 or SY (t) ≥ 1
]

× P [SX(t) ≥ 1 or SY (t) ≥ 1], (92)

II := IE
[

eXt · sup
0≤s≤t

|eYs−Xs − 1|
∣

∣SX(t) < 1, SY (t) < 1
]

× P [SX(t) < 1, SY (t) < 1], (93)

we have, sincem(R(0, s)) = m(L(0, s)),

IE

[

eqM(L(0,t)) sup
0≤s≤t

∣

∣

∣
eqM(R(0,s))−qM(L(0,s)) − 1

∣

∣

∣

]

= eqm(L(0,t))µ(I + II). (94)

To estimateI andII it useful to observe that for alla ∈ R we
have|ea − 1| ≤ e|a| − 1, and thus,

|e(y−x)−1| ≤ e|y−x|−1 ≤
{

e|y|+|x| for all x, y,
5(|x| + |y|) if |x| ≤ 1, |y| ≤ 1.

Indeed, fora < 0 we have|ea − 1| = 1 − ea ≤ e−a − 1
since(ea/2 − e−a/2)2 ≥ 0. The constant5 could be slightly
improved.

First, to estimateI we define the eventsEk,n := {k >
SX(t) ≥ k − 1, n > SY (t) ≥ n − 1} andF1,1 := {SX(t) >
1 or SY (t) > 1}. Conditioned onEk,n the following bound
holds for all0 ≤ s ≤ t:

eXt · | exp(Ys −Xs) − 1| ≤ ek(enek) = e2k+n.

Taking the supremum overs and using self-similarity (89)
and (90), together with the independence ofXs and Ys for
0 ≤ s ≤ b we find that I is bounded from above by the
quantity

∞
∑

k,n=1

IE[eXt · sup
0≤s≤t

|eYs−Xs − 1|
∣

∣Ek,n, F1,1] · P [Ek,n, F1,1]

≤
∑

(k,n) 6=(1,1)

en+2k · 64 · e−
c

ξ2
(k−1)2

t · e−
c

ξ2
(n−1)2

t

<∞. (95)

Elementary estimates usingexp(−u) ≤ 1/u show thatI is not
only finite (note thatII is trivially finite) but O(t) as t → 0
with a prefactor that can be made arbitrarily close to64ξ2/c.
As a matter of fact,I is O(tk) for any k.
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Second, using thatIE[V
∣

∣V < z]P [V < z] ≤ IE[V ] for any
positive random variableV and (89) we find

II ≤ IE[e · 5 sup
0≤s≤t

(|Ys| + |Xs|)
∣

∣

∣
SX(t) < 1, SY (t) < 1]

×P [SX(t) < 1, SY (t) < 1]

= 5e · IE[SX(t) + SY (t)]

=
√
t · 10e · IE[SX(1)]

=
√
t · ξ · 10e · IE[SB(1)].

Here, B(s) denotes normalized Brownian motion with
IE[B2(1)] = 1; IE[SB(1)] is a known constant number.

Step 3: In summary: usingρ(q) = −qµ − q2σ2/2 and
lemma 8 there are constantsc1 and c2 independent of any
parameters such that

∆
(n)
b,q (t) ≤ (c1ξ

2tbn+c2ξ
√
tbn) exp[(−q2σ2/2)m(L(0, tbn))].

(96)
The only dependence on parameters enters through
m(L(0, tbn)) and throughξ2. Notably,

bnξ2 = q2σ2tbnm(L(0, 1))

= q2σ2bn
∫ bn

bn+1

g(r)dr

= q2σ2

∫ 1

b

g(n)(r)dr.

♦

APPENDIX IV
EXAMPLE OF A DIRECT COMPUTATION IN A NON SCALE

INVARIANT CASE

We give below a direct derivation of the scaling ofIEA(t)2

for Example 7 of Section III-E, the special non scale invariant
case whendm(t, r) = cdtdr/r2+β for −1 < β < 0. A
convergence criterion is given as well.

Using definition (27) ofAr(t), we have

IEAr(t)
2 =

∫ t

0

∫ t

0

IE[Qr(u)Qr(v)]du dv (97)

=

∫ t

0

∫ t

0

exp {−ϕ(2)m (Cr(u) ∩ Cr(v))} dudv.

As a first step towards the auto-correlationIE[Qr(u)Qr(v)]
we note that foru andv such that|u− v| ≤ 1

m (Cr(u) ∩ Cr(v)) =

∫ 1

max(r,|u−v|)

c

s2+β
(s− |u − v|) ds.

(98)
m (Cr(u) ∩ Cr(v)) is simply zero for|u− v| ≥ 1. This yields
wheneverβ /∈ {−1, 0}:

m (Cr(t) ∩ Cr(s)) = (99)






































c

[

1− | t− s |−β
−β +

| t− s |
1 + β

(

1− | t− s |−(1+β)
)

]

for r ≤ |t− s| < 1, (a)

c

[

1 − r−β

−β +
| t− s |
1 + β

(

1 − r−1−β
)

]

for 0 ≤ |t− s| ≤ r. (b)

As a consequence,

IE[Qr(u)Qr(v)] = (100)






















































ecϕ(2)/β exp

(

−cϕ(2) | u− v |
1 + β

)

× exp

[

−cϕ(2) | u− v |−β
β(1 + β)

]

for r ≤ |u− v| ≤ 1,

exp

(

cϕ(2)

β
(1 − r−β)

)

× exp

[

−cϕ(2) | u− v |
1 + β

(1 − r−(1+β))

]

for |u− v| ≤ r.

Then,IEAr(t)2 in (97) decomposes in the sum of two integrals
on disjoint domainsE1 andE2:

E1 = {(u, v) ∈ [0, t]2 : r ≤ |u− v| ≤ 1}, (101)

E2 = {(u, v) ∈ [0, t]2 : |u− v| < r}. (102)

First, using the changes of variables
{

w = u− v,

z =
u+ v

2
,

the integral overE2 yields:
∫∫

E2

IE[Qr(u)Qr(v)]du dv = 2 exp

(

cϕ(2)

β
(1 − r−β)

)

×
∫ r

0

dw (t− w) exp

[

−cϕ(2) | u− v |
1 + β

(1 − r−(1+β))

]

.

(103)

which vanishes asr tends to zero wheneverβ ≤ 0 and diverges
to infinity asr tends to zero wheneverβ > 0. Thus, the limit
r → 0 makes sense forβ ≤ 0 only.

Second, the integral overE1 yields:
∫∫

E1

IE[Qr(u)Qr(v)]du dv = 2ecϕ(2)/β (104)

×
∫ t

r

dw (t− w) exp

[

− cϕ(2)

β(1 + β)
w−β

]

exp

(

−cϕ(2)

1 + β
w

)

.

For w �
∣

∣

∣

∣

1 + β

cϕ(2)

∣

∣

∣

∣

, we can use the following approximation:

exp

(

−cϕ(2)

1 + β
w

)

= 1 +O(w). (105)

whereO(w) can be bounded byκw for some constantκ.
∫∫

E1

IE[Qr(u)Qr(v)]du dv ' 2ecϕ(2)/β (106)

×
∫ t

r

dw

(

∞
∑

n=0

(γw−β)n

n!
t−

∞
∑

n=0

(γw−β)n

n!
w

)

whereγ = − cϕ(2)

β(1 + β)
. For −1 < β < 0,

∫∫

E1

IE[Qr(u)Qr(v)]du dv ' (107)

ecϕ(2)/β
∞
∑

n=0

γn

n!

1

(1 − βn)(1 − β
2n)

t2−βn +O(r)
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Fig. 10. f(t) compared tog(t) for the choiceβ = −0.4, c = 1, ϕ(2) =
−0.2. This figure may be compared to figure 4

where |O(r)| ≤ κr for some constantκ. Only the first term

will remain in the limit r → 0. Let α =
ϕ(2)

β
≥ 0 and−1 <

β < 0 and11



















f(t) = exp
(

−αt−β
)

=

∞
∑

n=0

(−1)n
αn

n!
t−βn,

g(t) =

∞
∑

n=0

(−1)n

(1 + β)n(1 − βn)(1β2n)

αn

n!
t−βn.

(108)

To show that the scaling described by (40) of Theorem 1
is valid for q = 2 is now equivalent to show that|f(t) −
g(t)|/f(t) � 1 for t ≤ 1. This is done by studying the sum

S(t) = f(t) − g(t)

=

∞
∑

n=0

(−1)n
αn

n!

(

1 − 1

C(n)

)

t−βn (109)

where

C(x) = (1 + β)x(1 − βx)(1 − β

2
x). (110)

The study ofC(x) for x ≥ 0 shows that for anyβ < 0 there
exists somexo ≥ 0 such that∀x ≥ xo, C(x) < 1 so that
(1 − 1/C(x)) < 0. Then using usual criteria of convergence
for partial sums of alternate series forn ≥ xo, one shows that:

|S(t)|
f(t)

∼
t→0

∣

∣

∣

∣

α

(

1 − 1

C(1)

)∣

∣

∣

∣

t−β (111)

Note that(1 − 1/C(1)) remains small in general since it is
less than0.15 for −0.83 < β < 0. This result can be made
even more precise for a chosen example. For instance when
β = −0.4, ϕ(2) = −0.2 and c = 1 as in Example 7 of
Section III-E and V, one obtains that for anyt ≤ 1,

|S(t)| ≤ α

(

1 − 1

C(1)

)

t−β − α2

2

(

1 − 1

C(2)

)

t−2β (112)

so that |S(t)|
f(t)

≤ 0.03 , ∀t ≤ 1. (113)

11It is of interest to note thatg(t) can be easily obtained by numerical
integration from the second derivative oft2g(t) given by:

d2

dt2
[t2g(t)] = 2 exp

»

−
α

1 + β
t−β

–

.

Moreover, the approximation (105) is true for

t�
∣

∣

∣

∣

1 + β

ϕ(2)

∣

∣

∣

∣

= 3 that is for t . 0.3. Thus we can consider

with well controlled accuracy thatf(t) ' g(t). Finally,
using (97), (103), (107) and (111) for−1 < β < 0:

IE[A(t)2] ' ecϕ(2)/β t2 exp

(

1 − t−β

−β

)

(114)

for t�
∣

∣

∣

1+β
cϕ(2)

∣

∣

∣
. This exactly corresponds to the scaling behav-

ior described in (40) of Theorem 1. Thus we have obtained by
direct computation the non scale invariant behavior observed
on IEA(t)2 in Example 7 of Section III-E.

APPENDIX V
PROOF OFPROPOSITION3 (H=1/2)

Let us considerV1/2,r(t) = B(Ar(t)) andZr(t).
Conditioning on knowingAr, note that{V1/2,r(t)

∣

∣Fr},
where Fr denotes the natural filtration, is a zero mean
Gaussian process. UsingIEB(t)B(s) = σ2 min(t, s) with
σ2 = var(B(1)) = IE[|B(1)|2] we find

IE[B(Ar(s))B(Ar(t))
∣

∣Fr] = σ2 min(Ar(t), Ar(s)). (115)

Together withIE[Ar(t)] = t we get IEB(Ar(t))B(Ar(s)) =
σ2 min(t, s).

Let us now turn toZr by considering{Zr(t)
∣

∣Fr}. The
integrand of the Ito integral in (60) being now deterministic
this is a zero mean Gaussian process. For simplicity, assume
s < t for the moment. We use a well-known rule of the Ito
integral:

IE[

∫ t

0

f(u)dB(u)

∫ s

0

g(v)dB(v)]

= IE[

∫ s

0

f(u)dB(u)

∫ s

0

g(v)dB(v)]

+ IE[

∫ t

s

f(u)dB(u)

∫ s

0

g(v)dB(v)]

= σ2

∫ s

0

f(u)g(u)du. (116)

In the second step we used that the integrals over disjoint
intervals are independent and zero mean. From this we obtain

IE[Zr(t)Zr(s)
∣

∣Fr] = σ2

∫ s

0

√

Qr(u)
√

Qr(u)du (117)

= σ2Ar(s) = σ2 min(Ar(t), Ar(s)),

that coincides with (115).
Conditioned on knowingAr, both processes{V1/2,r(t)|Fr}

and {Zr(t)|Fr} are Gaussian with identical auto-correlation
σ2 min(Ar(t), Ar(s)). They are, thus, identical in the sense
of finite dimensional distribution, and so must be the uncon-
ditional processesV1/2,r(t) = B(Ar(t)) andZr(t). Further-
more,IEV1/2,r(t)V1/2,r(s) = σ2 min(s, t).

In the standard Brownian case,H = 1/2, we point out that
the incrementsV1/2,r(t) − V1/2,r(s) andV1/2,r(v) − V1/2,r(u) are
(second order)un-correlated wheneveru < v ≤ s < t; this
follows easily by conditioning onFr using the independence of the
increments of the ordinary Brownian motionB. However, they are



IEEE TRANSACTIONS ON INFORMATION THEORY 20

not independentand inherit higher order correlations fromQr(s).
Mandelbrot calls this the ”blind spot of spectral analysis”(see also
[1]).
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