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ABSTRACT

Infinitely Divisible Cascades are a model class recently in-
troduced in the field of turbulence to describe the statistics
of velocity fields. In this paper, using a wavelet reformula-
tion of the cascades, we investigate their ability to analyze
and model scaling properties of data and compare their fun-
damental ingredients to those of other scaling model classes
such as self-similar and multifractal processes. We also pro-
pose an estimation procedure for the propagator or kernel of
the cascades. Finally the cascade model is successfully ap-
plied to describe Internet TCP network traffic data, bring-
ing new insights into their scaling properties and revealing
a pitfall in existing techniques.

1. MOTIVATION

The ubiquity of scaling phenomena in natural and man-
made systems is nowadays a well-recognized fact, the most
prominent example being perhaps that of communication
networks [8, 10]. Much work has been carried out for ana-
lyzing and modeling signals produced by such systems, and
it has been amply demonstrated that wavelet-based tools
happen to play a key role in this context [1]. Nevertheless,
a number of issues still remain open, especially in terms of
model validation. One of the central problems is that the
idea of scaling is generally associated to some form of lin-
earity in a well-chosen log-log diagram, a behaviour which
has to be validated. Another crucial issue is that, in gen-
eral, scaling (if any) only occurs in a given range of scales
and, depending on this range, different models have to be
advocated (e.g., long-range dependence at large scales vs.
multifractality at small scales). It follows that estimating
relevant scaling parameters is somehow linked to the choice
of some a priori model whose validation may prove diffi-
cult. What we propose here is to circumvent this difficulty
by (7) making use of a general and versatile model based on
a notion of a multiplicative cascade, and (4 ) validating its
use and estimating its parameters on a statistical basis.
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More precisely, it has been shown [1] that wavelets can
be considered as “matched” to self-similar processes in the
sense that wavelet coefficients exactly reproduce, from scale
to scale, the self-replicating statistical structure of such pro-
cesses. In the very special case of a strictly self-similar pro-
cess {X(t),t € R} of index H €]0, 1], and for a proper nor-
malization of its wavelet coefficients {dx (4, k), (4, k) € Z2},
the key scaling relation is that IE|dx (4, k)|? « exp{qgH In(27)}
for any ¢ € R. The main quality of self-similarity (SS)
with respect to scaling analysis is its simplicity: the mo-
ments of the wavelet coefficients all behave as power-laws
of the scale a = 27, controlled by a single scaling expo-
nent, the self-similarity parameter H. This simplicity is
also its major drawback since the model may not be ver-
satile enough to model actual empirical data. It has there-
fore been proposed that the unique scaling parameter H
be replaced by a collection of exponents H(q), allowing
much greater freedom to fit to data, in other words that
exp{qH In(27)} — exp{H(q) In(27)}. This model will be re-
ferred to as multi-scaling (MS). (One can remark that, when
such a situation is encountered in the small scales limit
(j = —o0), H(q) is nothing but the classical ¢, function of
the multifractal formalism [11].) The main limitation of this
model, however, is that power-laws for the moments must
be observed. A second level of generalization is therefore
possible, according to exp{H(q) In(27)} — exp{H(¢q)n(27)},
where n(.) does not necessarily reduce to the logarithm
function, with is associated to a notion of strict scale invari-
ance. This corresponds to what is called an infinitely divis-
ible cascade (IDC) model. While giving up the requirement
that moments behaves as power-laws of scales, such a model
maintains, however, a fundamental feature in common with
SS and MS : the separability of the moments structure in
the variables g (order of the moment) and 27 (scale). In
summary, we have the following relations between SS, MS
and IDC :

S Bldx( k)= Cy(2)”  =Cyexp(gHIn(2))
MS  Bldx( R = Cy(2)7@ =0, exp(H(q)In(2))
IDC  Bldx(j, k)|* = = Cy exp(H(q)n(27)).

(1)

Section 2 will present the IDC model in more detail and will
then address the question of validating the model and es-
timating its two ingredients, the functions H(gq) and n(a).



Section 2.2 will finally illustrate the usefulness of the ap-
proach in an application to Internet data traffic.

2. INFINITELY DIVISIBLE CASCADES

2.1. Definitions

The concept of IDC was first introduced by B. Castaing in
[3, 4] and rephrased in the wavelet framework in [2]. We
now briefly recall its intuition, definition, consequences and
relations to other models. Starting again from the self-
similar case, one can write the probability density function
(pdf) of the wavelet coefficients at scale a = 27, as a dilated
version of the pdf of the wavelet coefficients at a larger
scale a’: pq(d) = (1/ao) par (d/ao) where the dilation factor
is unique : a0 = (a/a’)”. In the cascade model, the key
ingredient is that there is no longer a unique factor but a
collection of dilation factors « ; consequently p, will result
from a weighted sum of dilated incarnations of p,:

o

pa(d) = /Ga,a: (Ina) épa: (i) dlna.

The function G, . is called the kernel or the propagator
of the cascade. Obviously, if G, , is a Dirac function,
Goo (Ina) = §(lna—HlIn(a/a')), IDC reduces to SS, there-
fore understood as a special case. The definition of the cas-
cade above shows that the pdf’s of p and p , of the wavelet
log-coefficients In |d| are related by a convolution with the
propagator :

p,(ne) = /Ga,a/(lna)ga, (In|d| —Ina)dlnca
= (Gaw *p,,)(na). (2)

If cascades exist between scales a” and a' and between
scales a and a”, then a cascade between scales a and a’
exists, and the corresponding propagator results from the
convolutions of the two propagators: G, o1 = Gg o *¥Ggrr o/ -
Infinite divisibility (also called continuous self similarity)
means that no scale between a and o’ plays any character-
istic role (i.e., a” in the above statement can be any scale
between a and a'). Infinite divisibility therefore implies
that the propagator consists of an elementary function Go
convolved with itself a number of times, where that number
depends on a and a':

G (Ina) = [Go(In a)]* (M@=@")

Using the Laplace transform éa,a/ (q) of G4, this can
be rewritten as G, ./(q) = exp {H(q)(n(a) — n(a’))}, with
H(q) = InGo(q) and a := 27 ; this implies that E|dx (j, k)|? =
Cqexp {H(q)n(a)}, thus validating eq. (1). The main con-
sequences of IDC (in other words, of the separability of the
variables ¢ and a), read therefore :

B G R = H@n() + K, ©
WBldx G = TS Bl P + o (@

This last equation implies that moments behave as power-
laws relative to each other. Such relations are sometimes

called, in turbulence mainly, ” extended self-similarity”. Note
that, in the relation (3) above, there is an arbitrary element,
indeed:

Hn(@)+ K, = (52) (Bn(a) +7) + (K, - 242)
= H(@n'(@)+K,

where 8 # 0 and v are arbitrary constants. It clearly indi-
cates that H is defined up to a multiplicative constant while
n is defined up to multiplicative and additive constants.

If it is moreover required that the function n(a) =1na,
the IDC is called scale invariant (SIIDC) and this implies
that :

Caor (@) = (a/a’)™ 0@ and Eldx (j, k)|* = (27)" @),

proving that SIIDC reduces to MS. If, moreover, the power-
laws are observed in the limit of small scales (a = 27 —
0), then, MS is equivalent to multifractal (MF), and the
exponents (,—from which the Legendre MF spectrum is
obtained through a Legendre transform [11]—are related
to the propagator through {, = H(q) = In ég(q). In this
framework, MF is therefore understood as a special case
of IDC. The stochastic multiplicative cascades introduced
by Mandelbrot [9], constitute the canonial example of such
situations. In a SIIDC, one can also inquire as to whether
(q is a linear function of ¢ or not, in which case the cascade
reduces to the even more special case of SS. It is, therefore,
natural to consider the function {,/q = H(q)/q and test its
constancy (see next section).

2.2. Analysis

When one intends performing a cascade type analysis of ac-
tual data, the key point is the estimation of the IE|dx (j, k)|?.
Due to the fact that wavelet coefficients of wide classes of
scaling processes are stationary and exhibit weak statisti-
cal dependences [1, 7], S;(j) = 1/n; 347 |dx (4, k)|?, an
average over time, will constitute reliable estimators of the
E|dx (j,k)|? (n; is the number of available coefficients at
scale Zj). From the properties of the wavelet coefficients
and under mild hypothesis, it is moreover possible to esti-
mate IEln S,(j) and Var InS,(j). For instance, when the
random variable |dx (7, k)|? has finite variance, we use, in
the estimation, the asymptotic results:

Eln S,(j5)

~ InlE|dx(j, k)|? + Cste/n;
Var In S,(j) =~

Cste/n;.

To test the adequacy of the IDC model on data, one can
check that its main consequence, extended self-similarity
(relation (4)), is verified. The hypothesis testing procedure
therefore consists in plotting the In.S,(j) versus In Sy(j)
diagrams and testing whether they are straight lines or not.
To be meaningful, this test must be performed taking into
account the variance of the In S;(j). The next step in the
analysis is to estimate the parameters of the cascade, that is,
identify its propagator, or equivalently, the functions H(q)
and n(2’)). The H(q) are estimated from weighted linear
regressions in the In S,(j) versus In S, (j) plots,

H(q)/H (p) = slope,,, (5)



the weights of the linear fit being related to the Var In S, (j).
To estimate n, as proposed in [5], we start again from the
separability of the variables ¢ and 27 and (3), from which
we propose the following estimators:

Ky = {lnSy(a)—slope, ,InSp(a))a
2 (1 (InS,(a) - K K, ©
fi(a) A \slope, . \ " a(a) )/, + Ky,

where (.)q (resp., {.),) means average over the values of ¢
(resp., the values of a). In these estimation procedures, we
naturally encounter again the arbitrary components in the
definitions of H and n. These are removed by fixing p at
some arbitrary ¢ value, which in practice means that one
selects arbitrary values for H(p) and K. In other words, H
can only be known up to a multiplicative constant 1/H (p),
and n up to a multiplicative, 1/H(p), and additive, K,
constant. From a practical point of view however, the choice
of p is not entirely arbitrary. It should be chosen as either
the smallest or the largest of the available g values. Indeed,
the quantities In Sy(j) and InS,(j) are not independent,
although intuitively the farther from 1 the ratio ¢/p is, the
weaker the dependences will be, an important feature for
both model testing and estimation procedures.

This cascade analysis has been applied in turbulence
leading to interesting conclusions [5], the next section illus-
trates the benefit of the cascade analysis for the study of
computer network traffic data.

3. APPLICATION TO NETWORK TRAFFIC

The existence of scaling in telecommunications traffic is now
well established, and recent work has shown the relevance
of multifractal models [6, 12]. We now illustrate the bene-
fits of an IDC approach by examining a two hour long set
of TCP data collected on a link at the University of Auck-
land between 6pm - 8pm, Thursday July 8th 1999, by the
WAND group at the University of Waikato. TCP is the
protocol used for reliable data transfer over the Internet,
including Web based data retrieval. An understanding of
the traffic it generates is a key problem in modern network-
ing. The capture hardware developed at WAND enables
TCP/IP traffic carried by asynchronous transfer mode tech-
nology at 155 Mbits/s to be measured with ~ 0.1us times-
tamp accuracy and no losses.

From a given set of raw data many different time series
can be extracted. Here we consider a time indexed series
X (k) of length n = 720, 000, corresponding to the number
of new TCP connections arriving per 10 ms interval. A sec-
ond order scaling analysis is presented in the top left plot in
figure 1. Biscaling is clearly observed, that is two separate
scaling ranges, ‘small scales’: j € [3,8], and ‘large scales’:
Jj € [8,16], joined at the characteristic scale j = 8 (~ 2.56).
This time scale is of roughly the same order of magnitude
as round trip times in the Internet and may thus be related
to network control feedback mechanisms, perhaps that of
the TCP protocol itself as suggested in [6]. Biscaling with
a similar breakpoint has been observed by the authors in
end-to-end Internet data [1]. (Note that j = {1,2} are
not included in the small range. This is associated with
the fact that, as the link is lightly loaded, X (k) is sparse,
being 90.2% zeros, and therefore contains little informa-
tion at these scales). Logscale Diagrams were examined at

orders ¢ = {0.5,1,1.5,2,2.5,3,4,5,6}, and similar results
were found, for example (s(j) is displayed in the top right
in figure 1. In addition, informal tests for stationarity were
performed by dividing the series into blocks and examining
the Logscale Diagrams at different orders over each. The
biscaling, as well as the estimated exponents, remain re-
markably constant, and we therefore proceed under the as-
sumption of stationarity. Since, over each range separately,
scaling is observed at many orders, it is not unreasonable to
apply an independent multiscale analysis over each range.
The resulting {,/q plots are shown in the bottom row of
figure 1. Over the small scales (left hand plot) a horizontal
alignment is clearly not observed, corresponding to a non-
trivial multiscaling model. In contrast at large scales both
the form of the curve and the larger confidence intervals
suggest a simple multiscaling model, such as a self-similar
model.
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Figure 1: Multiscale analysis, the (,. Biscaling is ob-
served in both second order (top left) and higher order
(right) Logscale Diagrams. A resulting multiscale analysis
over small scales (bottom left) shows non-trivial multiscal-
ing (curve is not horizontal) whereas at large scales (right)
a trivial multiscaling is apparently observed.

Since multiscaling models are a special case of the IDC
model, implicitly two scale invariant IDC cascades, one per
range, have also been identified in the above analysis. A
natural question is, are these part of one and the same cas-
cade? To test this, we perform a cascade analysis over the
combined ‘full range’: j € [3,16]. Over the same set of ¢
values, {In Sz, In S1}(j) plots were examined. To within the
confidence intervals, in each plot a well defined slope was
found, confirming the hypothesis of separability, and thus



the presence of a single cascade over the full range. Exam-
ples for ¢ = {3,6} are given in the top row of figure 2. The
functions H(q) and n(a) = n(27) can then be estimated and
appear in the bottom row, together with comparisons of re-
sults from the multiscale analyses. In the bottom right plot
n(a) is seen to not be In(a), so indeed a single multiscale
analysis over the full range is not possible. However n(a) is
piecewise logarithmic about the octave j = 8 (see figure 2,
bottom right), justifying the multiscale analysis performed
over the small and large ranges. In the bottom left plot
H(q) is compared with (/{1 from the multiscale analyses,
and close agreement is found for each range, consistent with
the conclusion that a single cascade model underlies them
both. The new fact that arises from the cascade analy-
sis is that the functions {(g) from the two ranges are not
independent but in fact equivalent, being simple multiples
of each other, as could be checked from figure 1 and as is
plotted on figure 2, bottom left. This can be explained us-
ing the IDC model by setting ny(a) = bs In(a) + ¢, (resp.,
ni(a) = by In(a) + ¢;) over the small (resp., the large) scales.
Identifying H(q) = ¢(g) in the MS interpretation, indeed
yields : (s(q)/¢i(q) = bs/bi = cste. Thus the conclusions
from figure 1, that the analyses are independent and the
models of a different nature, is incorrect. This new insight
eliminates a misguided application and arbitrary fitting of
unrelated scaling models over the two ranges. Instead, it
allows the full set of data across all scales to be used to
estimate the key quantity H(q), reducing estimation errors.
Furthermore it clearly identifies the nature of the change at
octave j, as being captured in n(a) only, and not H(g).

For sake of simplicity in this paper, results were pre-
sented concerning the number of new TCP connections per
10ms only. Similar cascade analyses have been performed
on time series such as the durations of the TCP connections,
the number of TCP connections active at 10ms intervals,
the number of TCP packets per 10ms, the number of TCP
bytes per 10ms, ... and similar conclusions drawn: the
IDC describes the data very well, and biscaling is observed
with a function n(a) which in most cases is “piecewise log”
(figure 2).
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