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ABSTRACT

This work is a contribution to the analysis of the procedure,
based on wavelet coefficient partition functions, commonly
used to estimate the Legendre multifractal spectrum. The
procedure is applied to two examples, a fractional Brownian
motion in multifractal time and a self-similar a-stable pro-
cess, whose sample paths exhibit irregularities that by eye
appear very close. We observe that, for the second example,
this analysis results in a qualitatively inaccurate estimation
of its multifractal spectrum, and a related masking of the
a-stable nature of the process. We explain the origin of
this error through a detailed analysis of the partition func-
tions of the self-similar a-stable process. Such a study is
made possible by the specific properties of the wavelet co-
efficients of such processes. We indicate how the estimation
procedure might be modified to avoid such errors.

1. INTRODUCTION

Signals which present both strong variability on many time
scales, as well as highly irregular local structure, appear in
many contexts. Multifractal analysis [13] has become one
of the most widely known tools in the study of such signals.
Multifractals (MF) allow the compact description of com-
plex forms of scaling behaviour which go well beyond that
of more traditional scaling models such as the fractional
Brownian motion (fBm). Another central feature is their
strongly non-Gaussian character. Such models therefore
imply non-redundant scaling behaviour of moments of many
orders. These are commonly studied through the structure
or partition functions E|X (t+7) — X (t)|%, based on the in-
crements of the process X, which for multifractal processes
are expected to obey power laws

E|X(t+ 1) — X(t)|? ~ 7@ for 7 — 0.

The ((q) are often estimated through linear regression in
log-log diagrams. From these exponents information on
the Legendre multifractal spectrum D(h) (see below) can be
extracted, which describes the relative abundance of local
scaling exponents h of different orders (more refined forms
of MF spectra exist which are not considered here [13]).
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There is another class of models which combine in a
natural way both scaling behaviour and extreme local irreg-
ularity, namely self-similar a-stable (a-SSS) processes [14].
Such processes are multifractal [7, 13], however they form a
distinct class since their statistics of order ¢ > « are not fi-
nite (unless @ = 2, the Gaussian case). This is a source of ir-
regularity which is different in nature to that of other kinds
of multifractals, for example the multiplicative cascades in-
troduced by Mandelbrot, which have lognormal marginals
for which all moments are finite. We show here that despite
this dramatic difference in nature, it is possible to confuse
signals from these two classes when performing multifrac-
tal analysis based on the estimated {(g). Such an error
can have powerful implications. For example in queueing
analysis of telecommunications switches with multifractal
input, infinite moments in the input process can engender
infinite moments in the queueing process, corresponding to
rather long waiting times. From two examples, a fractional
Brownian motion in multifractal time and the linear frac-
tional stable motion, a simple a-SSS process, we show that
the seeds of the difficulty are twofold. First, surprisingly,
there is in fact no sharp discontinuity in the estimates of
the exponents ((q) in the a-stable case at the boundary
q = a. Second, estimation difficulties about this point can
hide the differences in behaviour that do in fact exist. The
main implications are that the MF spectrum is very poorly
estimated, and the possible a-stable nature of the process is
hidden. Through a thorough analysis of the wavelet-based
partition functions of the a-stable process, we explain why
these problems arise, indicate the actual behaviour of the
¢(q) estimates and the corresponding MF spectrum, and
finally suggest how the errors might be avoided in practice.

2. MULTIFRACTAL ANALYSIS

It has been proposed for some time [3, 4] and proved more
recently [13] that it is possible to replace an increment based
approach by defining wavelet-based structure functions ca-
pable of capturing the Legendre MF spectrum. A wavelet
approach is desirable from many statistical points of view.
For example, non stationary processes with stationary in-
crements can be rendered stationary in the wavelet domain,
enabling estimation via time averages. Strong correlations
in the time domain can also be dramatically reduced sim-
ply by selecting appropriately the number of vanishing mo-
ments of the wavelet, leading to estimates with small vari-
ance [1].



The discrete wavelet transform of a process X consists
of the set of coefficients

dx (3, k) = ()%, X)

where (,) denotes a scalar product and t); is a dilated
and translated copy of the mother wavelet 9 [5] : 9; x(t) =
2794p(279t — k). Note that for each fixed j the coefficents
{dx(j,k)} form a stationary process. The wavelet based
structure functions at scale 2/ are defined as E|dx (j,-)|4,
which assuming a classical multifractal formalism take the
form E|dx (j,-)|? ~ 27¢@. The Legendre multifractal spec-
trum D(h), where h is the local regularity exponent, then
follows from the Legendre transform of the {(q):

D(h) = min (gh - ¢(g) +1)

for those h for which D(h) > 0 [13] (we ignore other cases).
The key practical step is the estimation of the ((q),
which is effectively and commonly achieved via

i

Suli) = o= 3 ldx G I,

7 k=1

where n; is the number of coefficients at octave j. The re-
sulting estimation procedure consists of three steps. First,
check for straight lines in the log,(S,(j)) against log,(27) =
j diagram. We will refer to such plots as Logscale Diagrams
(LD’s). Second, estimate {(q) through linear regression as
the slope in those diagrams. Confidence intervals can be
calculated for each log,(S4(j)), which is essential for ver-
ifying the existence of the linear fit, and for determining
confidence intervals for {(g) estimates. Finally, an estimate
of the MF spectrum is obtained as the Legendre transform
of the estimated {((q)}.

3. TWO MULTIFRACTAL PROCESSES

In the next section we apply the estimation procedure de-
scribed above to two very different multifractal processes:
a fractional Brownian motion in multifractal time (MfBm),
and an a-stable self-similar process (a-SSS). Sample paths
of those processes, together with their increments, are plot-
ted in the top row of figures 1 and 2 respectively. The pa-
rameters of each process have been chosen such that their
sample paths are superficially very alike, with a similar de-
gree of irregularity. Thus if one did not know the origin
of the data, but wished to measure their multifractal spec-
tra, one would be naturally led to perform the very same
analysis procedure on each. In this section we describe the
theoretical properties of these examples, and in particular
their spectra.

The fractional Brownian motion in multifractal time
B(t) [11, 13] consists of a fractional Brownian motion with
self-similarity parameter H, By (t) [14], whose time has
been reparameterised: ¢ — M (t). This warping is highly
unsmooth, in fact multifractal in the sense that M(t) is
the distribution function of the multifractal measure char-
acterising the limit of a stochastic binomial multiplicative
cascade. We briefly recall that a binomial cascade is an
iterative re-distribution of an originally uniform mass on
the interval, where line segments are repeatedly divided in

two, the masses being re-distributed via weights obtained
by multiplying the original weights by multipliers resulting
from independent trials of a given random variable. For a
thorough review of multiplicative cascades and the MfBm,
see [13]. The MF spectrum D?(h) of the MfBm is related
to that of the cascade through D®(h) = DM (h/H), and
the spectrum of many simple cascades can be calculated
analytically. It has been shown in [10] that the exponents
(q of the wavelet-based structure functions of the MfBm are
related to its MF spectrum.

We next consider an «-SSS process with a € (0,2),
defined through the integral representation [14]:

X(t) = / £t w)M(du) (1)

where M (du) is a symmetric a-stable measure (with scale
parameter o), and f(¢,u) an integration kernel that con-
trols the time dependence of the statistical properties of
X. Provided that f is a well-chosen function, X is a self-
similar process with self-similarity parameter H, i.e., Vc >
0,{c ¥ X(ct),t € R} L {X(t),t € R}, where £ denotes
equality of all finite dimensional distributions. The Lévy
process, f(t,u) = 1(t —u > 0) — 1(u < 0), is the simplest
example, as it possesses stationary and independents incre-
ments, with H simply H = 1/a. The linear fractional stable
motion (LFSM) [14], for which f(t,u) = (¢t — u)iH_l/a) —

(—u (+H_1/°‘), where (u)+ = u if u > 0 and 0 elsewhere, and

a € (0,2), H € (0,1) and H # 1/a, is a stable equivalent
of the fBm with stationary but dependent increments. It
has been shown [6, 12] that, under mild conditions on the
mother-wavelet v, the wavelet coefficients dx (j,k) of sta-
ble processes exist and are a-stable random variables with
index a; = a for all j. The assumption of self similarity
then implies that their scale parameters satisfy [2]

gj = 002jH ) (2)

where oo depends on both ¢ and the nature of f(¢,u), and
furthermore [2] that

Eldx (j, k)|* = 2", ~1<g¢<a. (3)

Absolute moments outside of ¢ € (—1,a) are infinite, and
so, crucially, the exponents {; = gH are likewise only de-
fined within this range. A straightforward computation
of the corresponding Legendre transform yields the tent-
like multifractal spectrum shown in figure 1(f), where the
two slopes are given by a over h € (—oo, H) and —1 over
h € [H, 00) (see [7, 13] for a theoretical analysis of the MF
properties of @-SSS processes).

We arrive at the central difficulty, namely that in prac-
tice one does not know if multifractal data is a-stable, and
in any case a will be generally unknown, indeed a key pa-
rameter to measure. Thus it will not be known when or
if the {4 become undefined, and the question immediately
arises of what will happen if we unwittingly attempt to
apply the estimation procedure described above at orders ¢
exceeding a. To explore this question consider the following
arguments. Let X be S, (o, 8), that is an a-stable random
variable with scale parameter ¢ and symmetry parameter



B, and let F(x) denote its cumulative distribution function
(CDF). From theorem 3, pp. 547 in [8], we have

“[1 - F(x)] o L(a)a® (1 + p)

2 F(—z) e L) (1= p). @
where
[ Eesin(Z2)(a) f0<a<l,
L(a)—{2 2a gin(T4)M(a) if1<a<2. ®)

Let G(y) denote the CDF of Y = |X|? with ¢ > a. It
follows immediately from (4) that:

0 for y <0,

= 1
Gly) 1—[2L(a)o® + p2(y)] v for y > 0,

(6)

where limy_, 4o 2(y) = 0. The tails of G(y) therefore sat-
isfy the conditions of Theorem 5, pp. 181 in [9], proving
that G(y) belongs to the domain of normal attraction of a
stable law S’a/q((ZL(a)a"‘)q/"‘, 1). Let Z be distributed ac-
cording to this law, and let {Xx,k =1,... ,n} denote i.i.d.
random variables distributed as Sq (o, 8). It follows that

z< 1

q
n—>+oo nq/a Z |Xk|

as a/q < 1 means that centering constants are not required.
From standard results [8], we derive that (c; is the Euler
constant):

Ellog, |2]] =15 (— — 1) +log,((2L(a)o™)*/"
g 2 (TN _
5 log2 (1 + tan (2a)) C.
Let us now rewrite S,(j), when ¢ > a, as:

Z |d] qu = 1 ('1/0¢ q/a Z‘

A

()

The normalised quantity A is asymptotically (n; — o0)
independent of j. Assuming that the details at fixed scale
are ii.d. (in fact they are stationary and weakly correlated)
[2]- we apply the results above with a scale parameter of 1
to find, asymptotically,

IE [log, Sq(5)] =

From the dyadic sampling of the wavelet coefficient of data
n long, we have that n; ~ n27’, and from relation (2)
(05 = 0027 we conclude that asymptotically:

log, o} —log, n; tmale 4 g, (8)

E [log, S,(j)] = [1+q (H— é)] j+Cste. (9)

This reveals that for ¢ > « the ¢ order Logscale Dia-
gram should exhibit an approximately straight line of slope
1+¢q (H - é) In summary, should an LFSM process be

analysed at ¢ > «, although the S,(j) have infinite mo-
ments, the log,(S;(j)) do not, yielding well defined quanti-
ties 6, (expectations of slopes in Logscale Diagrams), which
do not have an interpretation as exponents. The 6, are
equal to {; = gH over q € (—1,a), but for ¢ > a they are
unrelated to the {; and hence to the multifractal spectrum,
and are given by 6, = 1+ q (H — £). (Note that a simi-
lar statement can be made for ¢ < —1, however we do not
address this here as it involves difficult issues concerning
estimation of negative MF spectral exponents [4].) Finally,
note that the Legendre transform of this two-component 6,
is in fact the same as that of (,, except that the left hand
branch of the transform terminates with a jump to —oo

4. DISCUSSION: THE ESTIMATION TRAP

In figure 1 the estimation procedure is successfully applied
to the MfBm sample path shown for g € [—1, 5]. In the mid-
dle row Logscale Diagrams of orders ¢ = 1 and 3 are shown
and the estimates are seen to closely follow, to within the
confidence intervals, the straight lines representing the the-
oretical results. In the bottom row the (, estimates also
follow the theoretical values closely, and the MF spectrum
is well reproduced. In figure 2 the same procedure is ap-
plied to the LFSM process. As expected, straight lines are
observed in both LD’s even though the underlying S, is not
defined in the ¢ = 3 case. In the bottom left plot the esti-
mated slopes 8, clearly display the predicted change in g de-
pendence at ¢ = «, and the estimation is good except near
the transition point. In contrast to this, the estimate of the
Legendre MF spectrum has a well rounded shape which is
quite distinct from the theoretical piecewise linear Legendre
transform of both {; and 64, and is reminiscent of the MF
spectrum of the MfBm model. This is the first key impact
of applying the standard analysis to a multifractal a-stable
process: the measured MF spectrum is indistinguishable
from other kinds of multifractals, so that the a-stable and
self-similar nature of the process is not detected. This de-
spite the fact that the sources of the multifractal variability
is radically different in the two cases. Indeed in the par-
ticular case of the Lévy stable process the increments are
stationary, and the sample path irregularities inherit purely
from its «—SSS nature, in clear contrast with MF cascades
where it derives from the complex dependency structure in-
herent in the cascade hierarchy. The absence of an obvious
a-stable signature is notable not only in the misleading es-
timate of the MF spectrum, but also in the LD’s, where
well behaved straight lines are found, and in the §,, as esti-
mation effects round off the sharp change in slope at ¢ = a.
The second impact is that the essentially simple nature of
the MF spectrum in the LESM case, being piecewise lin-
ear and determined entirely by its a-stable and self-similar
natures, is not recovered. The source of these errors is not
the difference in Legendre transform between (, and 6, as
these are in fact essentially the same as noted above, but
rather poor estimation of the 6, near ¢ = a. The Legendre
transform is very sensitive to errors in straight lines, and it
is mainly the slight curvature in the estimates in the correct
range of ¢ < a which distorts the sharp point of the true
transform to the bell shaped form. The difficulty, in any
case, results from the change in nature of the moments at
q = a. One way to avoid being mislead in this way is to
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Figure 1: Fractional Brownian motion in Multifrac-
tal time, H = 1/2. (a) Increments, (b) process, (c) LD
for ¢ =1 and (d) ¢ = 3, (e) partition functions exponents
{y, (f) Multifractal spectrum D(h). The dashed line (resp.
circles) show for the theoretical (resp. estimated) values.
The underlying cascade is binomial with symmetric-g8 dis-
tributed multipliers with p = 1.6, [13].

determine the exact cause of the distorted estimation of the
0, near g = a, an significantly reduce it. Another approach
is to prepend an examination of the finiteness of the S;(j)
to the estimation procedure, to detect the nature of the pro-
cess in advance and determine a range for ¢ which is both
relevant for the MF spectrum and safe for estimation. As
already noted this cannot be performed in the LD’s, where
all moments are finite. Such tests will typically be diffi-
cult to perform on the series themselves, as they may be
non-stationary and/or exhibit strong and long-range sta-
tistical dependencies. The wavelet coefficients reproduce
the behaviour of moments, yet are stationary within scales
and display weak or short range dependencies [1, 2]. They
therefore constitute likely candidates on which to base such
tests. Each of these approaches is being investigated.

5. REFERENCES

[1] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch.
Wavelets for the analysis, estimation and synthesis of
scaling data. To appear in Self-Similar Network Traf-
fic and Performance Evaluation, K. Park and W. Will-
inger, eds., Wiley Interscience, 1999.

[2] P. Abry, L. Delbeke and P. Flandrin, Wavelet-based
estimator for the self-similarity parameter of a-stable
processes. IEEE-ICASSP-99, Phoenix (AZ), 1999.

[3] A. Arnéodo, E. Bacry, and J.F. Muzy. Singularity spec-
trum of fractal signals from wavelet analysis: Exact
results. J. Stat. Phys., 70:635-674, 1994.

[4] A. Arnéodo, J.F. Muzy and E. Bacry. The multifractal
formalism revisited with wavelets. Int. J. of Bifurc.
and Chaos, 4(2):245-301, 1994.

(@) (b)
0
0 3V
X x
Ze]
_[@ o[ @
wn ()]
[V I\
(@] (@]
ke o
0 i 10 0 I 10
=
@]

Figure 2: LFSM process with o = 3/2, H = 0.47. As
for figure 1 except (e) shows the slopes 6,, which are only
¢q if g € (—1,a). In (f) a rounded MF spectrum estimate
is seen, qualitatively different from the true one (lines) .

[6] I. Daubechies. Ten lectures on wavelets.
Philadelphia, Pennsylvania, 1992.

[6] L. Delbeke and P. Abry. Stochastic integral representa-
tion and properties of the wavelet coefficients of linear
fractional stable motion. To appear in Stochastic Pro-
cesses and their Applications, 1999.

SIAM,

[7] S. Jaffard. Multifractal formalism for functions part i:
results valid for all functions. SIAM J. Math. Anal.,
28(4):944-970, 1997.

[8] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 2. John Wiley and Sons, Inc.,
New-York, London, Sidney, 1962.

[9] B. V. Gnedenko and A. N. Kolmogorov. Limit dis-
tributions for sums of independent random wvariables.
Addison-Wesley publishing company, Reading, Mas-
sachusetts, 1968.

[10] P. Gongalves and R. H. Riedi. Wavelet analysis of
fractional Brownian motion in multifractal time. Proc.
17éme Colloque GRETSI, Vannes, France, 1999.

[11] B. Mandelbrot. A multifractal walk down Wall Street.
Scientific American, 280:70-73, 1999.

[12] B. Pesquet-Popescu. Statistical Properties of the
Wavelet Decomposition of Certain Non-Gaussian Self-
Similar Processes. To appear IEEE Trans. on Sig.
Proc., 1999.

[13] R. H. Riedi. Multifractal processes. 1999. preprint.

[14] G. Samorodnitsky and M. S. Taqqu. Stable Non-
Gaussian Random Processes, stochastic models with
infinite variance. Chapman - Hall, New-York, London,
1994.



