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ABSTRACT

Infinitely divisible cascades (IDC) were first introduced in one di-
mension to provide multifractal time series to model the so-called
intermittency phenomenonin hydrodynamical turbulence. This
work extends the definition of infinitely divisible cascades from
1 to N dimensions, and focuses on the 2D case in particular. 2D
IDC appear as good candidates to model the statistics of natural
images since they share most of their usual properties. The poten-
tial of IDC for applications to image processing (texture synthesis,
denoising...) is emphasized.

1. INTRODUCTION

Statistical inference may be of great use for analyzing and under-
standing images. To this aim, there is a need for probabilistic
models of natural images, e.g., to develop Bayesian procedures
for object tracking, recognition and analytical performance anal-
ysis. Another motivation for pursuing image statistics has been
to understand the architecture of animal visual systems. Efficient
systems take advantage of statistical structure in their input signals
aiming at both denoising and compact representation. In this con-
text [1], an image is treated as a realization of a spatial stochastic
process defined on some domain inR2. Part of the difficulty en-
countered in the search for such models comes from the fact that
they should benon Gaussianas well asscale invariant[1,2].

Previous works –see [1] and references therein– have shown
that the power spectrum of an image follows a power law of the
form S(k) ∝ 1/k2−η althoughη can display some fluctuations.
Scaling behaviors have also been observed in a large number of
fields including natural phenomena (e.g., turbulence in hydrody-
namics) as well as mankind activities (e.g., Internet traffic). As far
as higher order statistics are concerned, the multifractal formal-
ism [3] has become one of the most popular framework to analyze
signals that exhibit scale invariance. The termsscale invariance
of a processX(x) then refer to the power law behavior of the mo-
ments of some scale dependent quantity1 built onX. For a positive
scalar processX(x) defined onRN , one often uses the box aver-
ages over a ball of radiusr and volumeVr

εr(x) =
1

Vr

Z
‖x′−x‖<r

dx′X(x′). (1)

In short, scale invariance is then described by a set of multifractal

1For instance incrementsX(y) − X(x) in function of ‖y − x‖ or
wavelet coefficientsTX(x, a) at scalea...

exponentsτ(q) defined through:

IEεr(x)q ∝ rτ(q), (2)

where IE denotes mathematical expectation.
The huge amount of analyses performed in the past 40 years

on data from turbulence in fluid dynamics revealed the so called
intermittency phenomenon[4]: scaling exponentsτ(q) of the lo-
cal energy dissipation exhibit a non linear dependence onq. This
observation was one of the main motivations which gave birth to
the multifractal formalism. Note that a multifractal behavior im-
plies both scale invariance and a non Gaussian behavior. One step
further, the property of Extended Self-Similarity (E.S.S.) was in-
troduced in the study of turbulent flows in the early 90s [4]. At
first, it was used to increase the precision of scaling exponent es-
timate. It relates moments of different orders through a relative
scaling behavior:

IEεq
r ∝ (IEεp

r)H(p,q). (3)

Scaling of the form given in (2) clearly implies E.S.S..
Several authors [5,6] have noted analogies between the scaling

properties of images and the statistics of turbulent flows. Turielet
al. [6] used the property of E.S.S. to show that the statistics of nat-
ural images resemble those of turbulent flows. Note that the E.S.S.
property does not simply reduce to a scaling property. It betrays
the evolution of the probability density functions of a scale depen-
dent quantity (locally averaged dissipation in turbulence, locally
averaged contrast in natural images), denoted byεr here, from the
larger scales to the finer. Indeed, the E.S.S. can be seen as the
signature of what is called aninfinitely divisible cascade scaling.
This was first observed on 1D signals such as hot wire velocity
measurements in turbulence [4] or Internet traffic flows [7].

Beyond statistical analysis, there is also a need for actual mod-
els and toolsto synthesizeprocesses with controllable scaling prop-
erties. To this respect, multiplicative cascades result intimately
connected to multifractal processes so that they have played a key
role in turbulence. A nice feature of multiplicative cascades is
that their synthesis relies on an easy to implement iterative proce-
dure. A succession of refinements and generalizations of such mul-
tiplicative cascades led to theinfinitely divisible cascades(IDC).
IDC provide us with a versatile family of non Gaussian scale in-
variant processes which result easy to synthesize numerically. For
1D signals (time series), IDC have given a way to the synthesis
of a large family of multifractal processes with prescribed prop-
erties [8–12]. This paper aims at showing how the 1D IDC con-
struction generalizes to N dimensions,N ≥ 1, with again many
appealing properties: scaling exponents can be prescribed in (2);
the scaling range can be precisely defined; properties are observed
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over a continuum in space and scale, e.g., there is no preferred
scale ratio as in discrete contructions; a wide class of non Gaussian
models is available. In N dimensions, geometrical features (e.g.,
anisotropy) can be taken into account. Focusing on the 2D case, it
appears in the following that IDC models are consistent with most
of known results on the statistics of natural images (see [1] for a
review).

Thus, we extend the definition of infinitely divisible cascades
from 1 toN (N ≥ 2) dimensions and focus on the 2D case in par-
ticular as it provides us with a relevant statistical model for natural
images. We show that 2D IDC meet the main statistical properties
of a wide class of natural images. We also point out that Mumford
& Gidas [13] proposed a class of very similar infinitely divisible
models from a completely different point of view. We argue that
the IDC appoach may give a new point of view to better under-
stand experimental observations and to compare various existing
theoretical models. Finally, various other possible applications to
2D images are considered including noise modeling, texture syn-
thesis, or solar images modeling.

2. INFINITELY DIVISIBLE CASCADES IN N
DIMENSIONS

2.1. Definitions

1D IDCs [8–12] were introduced as a randomized version of the
well known canonical multiplicative cascades of Mandelbrot [14].
The N-dimensional version result from a natural generalization of
the 1D definition.

Let G be an infinitely divisible distribution with moment gen-
erating functionG̃(q) that can be written in the forme−ρ(q).

Let dm(x, r) = dxdr/rN+1 a positive measure on the space-
scale half-planeP+ := RN × R+.

Let M denote an infinitely divisible, independently scattered
random measure distributed byG, supported on the space-scale
half-spaceP+ and associated to itscontrol measuredm(x, r).
The random measureM is such that

IE[exp [qM(E)]] = exp [−ρ(q)m(E)] .

For all disjoint subsetsE1 andE2, M(E1) andM(E2) are indepen-
dent random variables andM(E1 ∪ E2) = M(E1) + M(E2).

Definition 1.
A cone of influenceC`(x) is defined for everyx ∈ RN asC`(x) =
{(x′, r′) : ` ≤ r′ ≤ 1, ‖x′ − x‖ < r′/2} –see figure 1(a).
With a given infinitely divisible randomly scattered measureM ,
an Infinitely Divisible Cascading noise(IDC noise) is a family of
processesQ`(x) parametrized bỳ ∈ (0, 1) of the form –see fig-
ure 1(b) for a 2D example:

Q`(x) =
exp M(C`(x))

IE[exp M(C`(x))]
. (4)

Possible choices for distributionG are the Normal distribution,
Poisson and compound Poisson distributions, Gamma and stable
laws,... Note that the large scale in the definition ofC`(x) has been
arbitrarily set to1 without loss of generality. Choosing a large
scaleL 6= 1 reduces to a change of units(x, r) → (x · L, r · L).

Note that definition 1 may be extended to a more general frame-
work by introducing some localized integration kernel2 f(x) in (4):

2This may rejoin therandom wavelet expansionsevoked in [13].

Definition 2 (with integration kernel).

Q`(x) =
exp

R
f(x−x′

r′ ) dM(x′, r′)

IE
ˆ
exp

R
f(x−x′

r′ ) dM(x′, r′)
˜ (5)

This definition may result useful to attenuate small scales discon-
tinuities or to take into account some geometrical features of the
images under study –see figure 2 where various choices are illus-
trated. This general case will be studied in greater details else-
where [15].

2.1.1. Properties

An immediate consequence of the definition is thatQ` is astation-
ary positive random processwith the normalization:

IEQ` = 1. (6)

Stationarityis ensured by the invariance to translations of both the
control measuredm(x, r) and the cone of influenceC`(x). This
is consistent with the usual assumption that the underlying im-
age process is stationary or equivalently invariant to translations
in the image plane. The symmetry of the cone’s shape (in defini-
tion 1) inflicts anisotropicstructure as well. Moreover,Q` has a
log-infinitely divisible distribution, that islog Qr has an infinitely
divisible distribution. Thus, a large number ofnon Gaussiandis-
tributions are available (Poisson, Gamma, exponential, stable...)
–see figure 1(c).

One major scaling property of IDC is:

IEεq
r ∼ rτ(q) for r ≤ 1, (7)

where
τ(q) = ρ(q)− qρ(1) (τ(1) = 0), (8)

for all q for which ρ(q) = − log G̃(q) is defined. The power
law scaling behavior essentially roots in the choicedm(x, r) ∝
1/rN+1 (1/r3 whenN = 2). As a consequence, apower law
spectrum∝ k−(2+τ(2)), τ(2) < 0, is expected –see figure 1(d).
Furthermore, we emphasize that not only second order statistics
but higher order statistics are prescribed as well. Note that these
scaling behaviors are robust in a certain sense since they are pre-
served when elevatingQ` to some powerα > 0.

Thus, IDCs provide us with a large class ofnon Gaussian scale
invariant models, with a precise control of their scaling properties
and probability densities. Moreover, using (5), geometrical de-
grees of freedom may be introduced as well; these will be studied
elsewhere [15].

2.1.2. Compound Poisson Cascades

Among the full generality of infinitely divisible cascades, the fam-
ily of compound Poisson cascades [8] (CPC) plays a special role
for both historical and practical reasons. CPC have been widely
used to describe the statistics of turbulent flows [4] and they are
easy to synthesize numerically [11]. Indeed, CPC can be built
thanks to amarked Poisson point process{(xi, ri), Wi} with den-
sity dm(x, r). In this case, (4) takes the following form (see fig-
ure 1(a)):

Q`(t) =

Q
(xi,ri)∈C`(x) Wi

IE
hQ

(xi,ri)∈C`(x) Wi

i . (9)
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Fig. 1. (a) Space-scale cone definingQ`(x) at x(x, y). For a compound Poisson cascade,Q` is the product of those random multi-
pliers Wi(xi, yi, ri) that belong to the coneC`(x). (b) Example of a realisation of a compound Poisson cascadeQ` (gray levels) with
τ(2) ' −0.16 –see definition 1.(c) Estimated (log) probability density function of the gradient image: the pdf is clearly non-Gaussian
(Gaussian⇒parabola).(d) Power law spectrum ofQ`(x) as a function ofk = ‖k‖ over 2 decades: the observed slope is prescribed by the
choice ofτ(2).

(a) (b) (c)

Fig. 2. (a) Example of a realisation of a compound Poisson cascadeQ` (gray levels) withτ(2) ' −0.16 using a square integration kernel
f(x, y) = 1[−1/2,1/2](x) · 1[−1/2,1/2](y) –see definition 2.(b) & (c) Examples of CPC using different integration kernels.

Thus, the distribution ofQ`(x) is a log-compound Poisson dis-
tribution: the Poisson distribution that comes from the point pro-
cess(xi, ri) is compound with the distribution of the i.i.d. ran-
dom multipliersWi (> 0). One may as well describe CPC as the
multifractal product of cylindrical pulses [8]. At this point, we
emphasize thatmultiplicativemodels of the intensity of an image
I(x) (≡ Q`(x)) are equivalent toadditivemodels of the contrast
φ(x) ∝ log I(x) (≡ log Q`(x)). Algorithms for synthesis are
described in [15]

3. IDC TO MODEL NATURAL IMAGES

Infinitely divisible cascades share most of the usual properties ob-
served on image data bases [1]. Indeed, many of these features are
essential attributes of multiplicative cascades.

We already mentioned that IDC exhibit a power law spectrum
(∝ k−(2+τ(2))) and non Gaussian ditributions controlled by the
choice of the distributionG of Definition 1 (or equivalently by
the choice of the distribution of multipliersWi in the CPC case).
But IDC obey other non trivial properties among those commonly
reported on natural images.

For instance, the covariance of the intensityI(x) (≡ Q`(x))
obeys a power law. This is simply a consequence in the real space
of the power spectrum in the Fourier space. But a known property

of multiplicative cascades is moreover that the covariance of the
logarithm of intensity incrementslog |I(x2) − I(x1)| behaves as
log ‖x2 − x1‖. Such a property was used as a starting point of
the scale invariant model presented in [13]. In the framework of
multiplicative cascades, this property receives some intuition since
log ‖x2−x1‖ is simply the average number of common ancestors
{Wi, (xi, ri)} of the respective values ofQ`(x1) ≡ I(x1) and
Q`(x2) ≡ I(x2).

As far as the modeling of images is concerned, CPCs are not
only a statistical model but also receive some intuitive physical in-
terpretation. They may be interpreted as the light scattered through
a random superposition of transparent cylinders of sizes{ri} placed
at positions{xi} and with i.i.d. random transparencyWi. This
simplistic description points to the resemblance between CPC and
classical approaches in image modeling since they can be com-
pared to models where elementary objects of random sizes are dis-
tributed in space following a Poisson point process [1].

We stress again in [13] the use of infinitely divisible distribu-
tions combined to a1/r3 size distribution of objects which must
be connected todm(x, r) ∝ 1/r3 here. In [13] the notion ofclut-
ter is given a rather precise meaning that becomes even clearer in
the framework of IDC since it can be identified tolog(1/`). The
quantitylog(1/`) (` is the resolution of an IDC) can be seen as the
depthof the cascade since it is the average number of multipliers

Copyright 2005 IEEE. Published in the 2005 International Conference on Image Processing (ICIP-2005), scheduled for September 11-14, 2005 in Genoa. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

3



Multi-dimensional infinitely divisible cascades to model the statistics of natural images - Proc. of ICIP 2005, Genova, Italy - P. Chainais

Wi used to getQ`(x): the smaller̀ , the larger the range of scales
in the image and the larger the clutter. Even more precisely, the
cascadeQ` can be decomposed here in as many successive ’sub-
cascades’ as wanted by iterating the relationQ` = Q`′ ·Q`′

` where
Q`′

` is built using conesC`′
` in the rangè ≤ r ≤ `′ < 1.

Another non trivial observation receives an enlightening in-
terpretation in the IDC framework. In [5], the link between non-
Gaussian distributions and the inhomogeneity of gradients is stud-
ied by defining the coarse-grained log-contrastφN (x) of φ =
log(I/Io) in an NxN block surrounding each pointx. Denote
by σN the variance ofφN for eachN . Then, the normalized quan-
tities φN (x)/σN are found to be close to identically distributed.
LetD denote this distribution which has zero mean and unit vari-
ance. Letω a random variable distributed byD andW = eω.
Denote byIN (x) = exp[φN (x)]. Using our notations, the result
in [5] can be rewritten as:

φN (x)
in law

= ω · σN

⇓

IN (x)
in law

= W σN

(10)

A multiplicative hierarchy appears (in law) as the (geometrically)
averaged intensityIN (x) overNxN pixels is concerned. Again,
the framework of multiplicative cascades results relevant. This is
confirmed by the fact that the same analysis performed on IDC
images yields similar results withσN decreasing as− log N . The
quantity σN appears as a measure of the clutter at scaleN , or
equivalently as the depth of a multiplicative cascade. Thus, we
give some precise sense to the “hidden multipliers” evoked in [1]
which sound much like the Novikov’s ”breakwon coefficients” in
turbulence [16].

The absence of occlusion effect in the IDC model may call for
some comments. It should not appear as an appalling property for
at least two reasons. First, edges that result from occlusion may
not be the essential features within images which cause scaling.
Secondly, there is no ambition to generate realistic pictures from
a stochastic process realization. The purpose of such models is
to capture the main common statistical features of a large class of
images.

4. CONCLUSION

We have introduced the natural generalization of infinitely divis-
ible cascades (IDC) from 1 toN dimensions. We have mainly
focused on the 2D case which provides us with a wide class of
non Gaussian scale invariant models for natural images. Note that
scale invariance is not only meant in terms of Fourier spectrum but
also of higher order statistics (τ(q) for q ≥ 2). We have pointed
out the interesting similarities between IDC and the approaches
in [5, 13]. We hope that IDC will help to clarify the link between
different theoretical models of images as it was the case in tur-
bulence. We emphasize that the synthesis of IDC models results
easy in many cases of interest, namely the compound Poisson cas-
cades (CPC) family. Algorithms and MATLAB functions will be
available from our web page,www.isima.fr/˜chainais .

Finally, let us mention that the search for stochastic models of
natural images led to the elaboration of an interesting class of pro-
cesses which may serve for various applications: denoising (non
Gaussian noise), the study of biological systems for vision, texture

synthesis, solar UV images, modeling of porous media radiogra-
phy (2D projections of 3D sponge-like objects)... Such applica-
tions are promising directions of research under current investiga-
tion.
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