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Abstract—This paper derives two new optimization-driven
Monte Carlo algorithms inspired from variable splitting and
data augmentation. In particular, the formulation of one of the
proposed approaches is closely related to the alternating direc-
tion method of multipliers (ADMM) main steps. The proposed
framework enables to derive faster and more efficient sampling
schemes than the current state-of-the-art methods and can embed
the latter. By sampling efficiently the parameter to infer as
well as the hyperparameters of the problem, the generated
samples can be used to approximate Bayesian estimators of the
parameters to infer. Additionally, the proposed approach brings
confidence intervals at a low cost contrary to optimization meth-
ods. Simulations on two often-studied signal processing problems
illustrate the performance of the two proposed samplers. All
results are compared to those obtained by recent state-of-the-
art optimization and MCMC algorithms used to solve these
problems.

Index Terms—Bayesian inference, data augmentation, high-
dimensional problems, Markov chain Monte Carlo, variable
splitting.

I. INTRODUCTION

NUMEROUS machine learning, signal and image process-
ing problems involve the estimation of a hidden object

of interest x ∈ RN based on (noisy) observations y ∈ RM .
This unknown object of interest can stand for parameters of a
given model in machine learning [1] or may represent a signal
or image to be recovered within an inverse problem. With the
increasing amount and variety of available data, solving such
inference problems in high dimension becomes challenging
and generally relies on sophisticated computational inference
methods. Those methods are mainly based on stochastic sim-
ulation and variational optimization which are two powerful
tools to perform inference in complex models [2]. An impor-
tant class of stochastic simulation techniques is the family of
the Markov chain Monte Carlo (MCMC) methods [3]. Within
a Bayesian inference framework, MCMC algorithms have the
great advantage of providing a comprehensive description of
the posterior distribution of the parameter x to be inferred.
Contrary to optimization techniques which generally provide a
point estimate, this description permits the subsequent deriva-
tion of credibility intervals on the parameter x. Nonetheless,
note that optimization algorithms can also bring confidence
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information when the log-likelihood is supposed differentiable
by relying on the theory of large samples [4]. These confidence
measures are particulary important for inference problems
where very few observations are available (e.g. in biology [5],
physics [6] or astrophysics [7]) or when one is interested in
extreme events (e.g. in hydrology [8] or cosmology [9]). For
instance, MCMC methods have been recently used to conduct
Bayesian inference on gravitational waves [10]. However, con-
trary to optimization techniques, MCMC methods may suffer
from their high computational cost which can be prohibitive
for high-dimensional problems. To overcome this limitation,
a few attempts have been made to derive optimization-driven
Monte Carlo methods. The Hamiltonian Monte Carlo method
[11], also referred to as hybrid Monte Carlo, is an archetypal
example of the successful use of variational analysis concepts
(i.e., gradients) to facilitate the exploration of the target dis-
tribution. More recently, Pereyra [12] proposed an innovative
combination of convex optimization and MCMC algorithms.
Capitalizing on the advantages of proximal splitting recently
popularized to solve large-scale inference problems [13]–[18],
the proximal Monte Carlo method allows high-dimensional
log-concave distributions to be sampled. For instance, this
algorithm has been successfully used to conduct antisparse
coding [19] and has been significantly improved in [20].

Concurrently, variable splitting methods, developed at least
70 years ago [21], have been recently and extensively used to
solve large-scale inference problems of the form

argmin
x

f(x) + g(x), (1)

where f commonly refers to a data fitting term and g stands for
some regularization function which is often nonsmooth and/or
even nonconvex. The main idea of those methods consists in
splitting the variable of interest x into a pair of variables x
and z and then solving the counterpart minimization problem

argmin
x,z

f(x) + g(z),

subject to x = z.
(2)

The equality constraint ensures that solving (2) is equiva-
lent to solve the initial problem (1). Exploiting the variable
splitting idea, the alternating direction method of multipliers
(ADMM) [22], firstly introduced in [23], [24], has proven to be
considerably faster than fast iterative thresholding-shrinkage
algorithms (FISTA) [25] for solving high-dimensional inverse
problems in signal/image processing [26], [27]. This increase
in speed comes from the fact that ADMM uses a second-order
information of the data fidelity term whereas ISTA or FISTA
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essentially only takes into account gradient information. The
efficiency of ADMM makes it stand as a reference method
in high-dimensional signal processing problems such as those
encountered in hyperspectral imaging [28], [29]. This paper, in
the same spirit as [12], attempts to reconcile optimization and
Bayesian inference by proposing two new optimization-driven
MCMC algorithms that do not sample directly from the usual
target distribution

π(x) ∝ exp
[
−f(x)− g(x)

]
, (3)

which is assumed to be proper in the sequel. The first one
is only based on the idea of variable splitting and considers
a joint probability distribution p(x, z) which tends towards
(3) in a limiting case. The main purpose is to work with
two simpler distributions ∝ exp

[
−f(x)

]
and exp

[
−g(z)

]
separately. A similar scheme was recently and independently
proposed by [30] in order to distribute Monte Carlo meth-
ods on possibly multiple machines. The second proposed
approach goes one step further by introducing an auxiliary
variable u ∈ RN within a data augmentation scheme. The
main rationales behind the proposed approaches are threefold.
Firstly, fully Bayesian approaches allow other parameters
(e.g. nuisance or regularization hyperparameters) to be jointly
estimated with the parameter of interest x, avoiding their
empirical and painful hand-tuning. Secondly, as emphasized
above, samples generated by MCMC algorithms can be used
to build confidence intervals on the estimated parameters
contrary to optimization techniques that, in general, only
provide a point estimate. Note that in the case where the log-
likelihood is supposed differentiable, confidence information
can be brought by the latter. Finally, variable splitting and
data augmentation within the proposed approach pave the way
towards faster and more efficient samplers.

To this purpose, Section II introduces the hierarchical
Bayesian models associated to the proposed approaches. In
particular, the main ingredients, namely variable splitting and
data augmentation, are presented. Section III derives the two
resulting optimization-driven MCMC algorithms called SP
(splitting) and SPA (splitting & augmentation). In particular,
a parallel between ADMM and the proposed SPA algorithm
is drawn. Section IV considers two often-studied inference
problems encountered in signal processing that require to
sample respectively from high-dimensional Gaussian and log-
concave probability distributions. Section V illustrates the
performance of the proposed algorithms on these inference
problems. Finally, Section VI draws concluding remarks.

II. MODEL

This section introduces the proposed approach which aims
at using variable splitting and data augmentation to accelerate
and simplify the solving of large scale Bayesian inference
problems. The main properties of the resulting joint distri-
butions are introduced and its convergence properties towards
the usual target distribution (3) are proven. Table I summarizes
the main symbols used to define the proposed models.

TABLE I
LIST OF SYMBOLS.

Symbol Description
x, z,u, N parameter of interest, auxiliary variables

and their dimension
y,M observation vector and its dimension
f, g data fitting term and regularization function
π usual target distribution

ϕ1, ϕ2 functions associated to the split/augmented scheme
ρ, α parameters of the proposed approaches
N normal distribution

A. Variable splitting

Within an optimization framework, variable splitting aims at
individually using each term f and g of the objective function
in an optimization sub-problem. This divide-to-conquer strat-
egy generally yields simpler proximal operators and therefore
an easier algorithm to implement [31]. Following the same
intuition, in a Bayesian setting, variable splitting is expected to
lead to simpler sampling steps and thereby to a more efficient
sampler. Starting from the usual target distribution (3), the
introduction of a splitting variable z ∈ RN leads to the so-
called split distribution defined by

πρ ≜ p(x, z; ρ) ∝ exp
[
−f(x)− g(z)− ϕ1(x, z; ρ)

]
(4)

where ϕ1 : RN × RN → R+ is a divergence such that πρ
defines a proper joint distribution and ρ is a positive parameter
that controls the dissimilarity between x and z. Interestingly,
the associated conditional distributions that would be consid-
ered in a Gibbs algorithm scheme to sample according to (4)
are

p(x|z; ρ) ∝ exp
[
−f(x)− ϕ1(x, z; ρ)

]
(5)

p(z|x; ρ) ∝ exp
[
−g(z)− ϕ1(x, z; ρ)

]
. (6)

Thus, this variable splitting allows f and g to be dissociated
with the hope that these conditional distributions will be easy
to sample from. Indeed experiments in Section V will show
that considering the split distribution πρ in (4) instead of π in
(3) leads to a faster and more efficient algorithm.

It is worth noting that this variable splitting-based approach
can be related to previous works [32], [33] which also intro-
duced auxiliary variables to split the initial objective function.
However, the aforementioned works considered an exact data
augmentation scheme which is not the case here, see Theorem
1 below. In addition, this scheme was specifically designed for
Bayesian models relying on a Gaussian likelihood function,
which is much more restrictive than the target distribution
(3) addressed here. Finally, the data augmentation scheme
considered in [32], [33] may practically rise some compu-
tational difficulty since it requires closed-form expressions
of the augmented prior, which could not be available in
general. Nonetheless, note that both the latter and the proposed
approaches can be interpreted as divide-to-conquer approaches
ending up with simpler full conditional distributions.

Within a parallel setting, [30] proposed a similar variable-
splitting Bayesian framework motivated by distributed com-
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Fig. 1. DAGs associated with the usual and proposed hierarchical Bayesian
models. In black: DAG associated to (3); in black and green: DAG associated
to (4); in black, green and blue: DAG associated to (10). θx, θz and θu

stand for possible additional parameters that are not discussed in this paper.
(User-defined parameters appear in dashed circles).

putations when the likelihood function can be expressed as a
sum of terms over a possibly big dataset. Their approach can
be viewed as a particular instance of the proposed approach
when f(x) =

∑b
i=1 fi(x).

The directed acyclic graph (DAG) associated with the
proposed splitting model is depicted in Fig. 1 in black and
green. Note that sampling from (4) instead of (3) boils down to
considering another hierarchical Bayesian model. However, to
ensure the relevance of this extended model and the associated
distribution (4) with respect to the inference problem underlied
by the target distribution (3), one can expect that ϕ1 tend to
zero when z is close to x. Thus, if ϕ1 is a divergence measure
where the discrepancy between x and z is controlled by ρ, it
has to satisfy the following assumption that is closely related
to the equality constraint x = z in variable splitting methods.

Assumption 1: Let x and z obeying the distribution (4).
Then, ϕ1 is assumed to be such that, for all x, z ∈ RN ,

lim
ρ→0

exp
[
−ϕ1(x, z; ρ)

]∫
RN exp

[
−ϕ1(x, z; ρ)

]
dz

= δx(z). (7)

When this assumption is ensured, the usual target distribution
(3) is expected to be recovered from the marginal distribution
of x associated to (4) in the limiting case ρ → 0. This
expectation is met when a general form of the divergence ϕ1
is chosen, as stated by the following theorem.

Theorem 1: Let pρ(x) =
∫
RN πρ(x, z)dz. Then, under

Assumption 1, the following result holds∥∥π − pρ∥∥TV
−−−→
ρ→0

0. (8)

Proof: See Appendix A.
Note that the convergence in total variation implies the con-
vergence in distribution. Thereby, in the limiting case where
ρ tends to zero, the marginal distribution of x under πρ
coincides with the usual target distribution π. In Section IV,
the divergence ϕ1 will be chosen quadratic. This choice is not
a surprise since it is often used in optimization having the
great advantage of being differentiable and convex.

B. Data augmentation

The first proposed approach introduces the idea of variable
splitting only. It leads to a joint distribution (4) with an
additional term ϕ1 that controls the discrepancy between x
and z. Since ϕ1 is governed by ρ, one might set ρ to a
small value to ensure that x and z will not be too far from
each other (see Theorem 1). However, when sampling from
(4) via its conditional distributions (5) and (6), the smaller
ρ, the higher the correlation between samples, which may
deteriorate mixing properties. One option to improve these
mixing properties is to consider a data augmentation scheme.
Such a strategy consists in introducing auxiliary variables
within a target distribution: it is commonly used to build
more efficient sampling algorithms [34] with less interactions
between MCMC draws. This issue was for instance discussed
in [35], [36] for the Ising and Potts models. Along these lines,
an additional variable u ∈ RN is introduced in the previous
splitting model such that

πρ,α ≜ p(x, z,u; ρ, α) (9)

∝ exp
[
−f(x)− g(z)

]
(10)

× exp
[
−ϕ1(x, z− u; ρ)− ϕ2(u;α)

]
where ϕ2 is a known function defined on RN such that πρ,α
defines a proper joint distribution and α is a positive param-
eter. The DAG associated with the so-called split-augmented
distribution (10) is depicted in Fig. 1 with additional param-
eters drawn in blue compared to (4) in black & green only.
The conditional distributions associated with the joint split-
augmented distribution (10) are

p(x|z,u; ρ) ∝ exp
[
−f(x)− ϕ1(x, z− u; ρ)

]
(11)

p(z|x,u; ρ) ∝ exp
[
−g(z)− ϕ1(x, z− u; ρ)

]
(12)

p(u|x, z; ρ, α) ∝ exp
[
−ϕ2(u;α)

]
× exp

[
−ϕ1(x, z− u; ρ)

]
. (13)

The differences induced by data augmentation are clearly
visible when comparing (5) and (6) with (11) and (12). Within
a Gibbs sampler scheme, the auxiliary variable u could allow
to decrease the correlation between x and z by giving an
additional degree of freedom to each of the former variables.
Indeed experiments in Section V will show that this data
augmentation scheme leads to a sampler with better mixing
properties compared to the sampler associated to πρ.

However, to assess the relevance of sampling from the split-
augmented (SPA) distribution πρ,α in (10) instead of the split
(SP) distribution πρ in (4), the introduction of u should not
alter the joint distribution (4). Therefore ϕ1 and ϕ2 should
obey the following assumption.

Assumption 2: Let x, z and u obeying the distribution (10).
Then, ϕ2 and ϕ1 are assumed to be such that for all x ∈ RN

and z ∈ RN ,∫
RN

exp
[
−ϕ1(x, z− u; ρ)− ϕ2(u;α)

]
du

∝ exp
[
−ϕ1(x, z; η(ρ, α))

]
. (14)

where η(ρ, α) plays the role of a parameter. In other words,
this assumption ensures that a split distribution πη of the
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form (4) can be obtained by marginalizing the split-augmented
distribution πρ,α in (10) with respect to u. For usual choices
of ϕ1 and ϕ2, this assumption is satisfied, as stated in the
following theorem.

Theorem 2: Let x, z and u obeying the distribution (10). In
the particular case where ϕ1 is quadratic that is

ϕ1(x, z− u; ρ) =
1

2ρ2
∥∥x− (z− u)

∥∥2
2

(15)

and ϕ2 has the form

ϕ2(u) =
1

2α2
∥u∥22 , (16)

Assumption 2 is verified with η2(ρ, α) = ρ2 + α2 so that

ϕ1(x, z; η(ρ, α)) =
1

2 (ρ2 + α2)
∥x− z∥22 . (17)

Proof: The proof consists in a straightforward marginal-
ization within a Gaussian model, which can be easily derived,
e.g., from computations similar to those in [37, Chap. 10].

In this particular case, it appears that a unique positive
parameter η2(ρ, α) = ρ2 + α2 drives the convergence of the
marginal distribution of x w.r.t. the split distribution πη , that
is of the same form as (4), towards the target distribution π in
(3). These quadratic forms of ϕ1 and ϕ2 play a special role.
They are closely related to the ADMM (see Section III-B) and
will be considered in Section IV.

Eventually, we emphasize that the proposed splitting and
data augmentation methods can be easily generalized to cases
where there are more than two functions f and g, and when
these functions involve distinct linear operators Ki (subsam-
pling, blur, transform...). In this case, the target distribution
can be written as π(x) ∝ exp

[
−
∑

i hi(Kix)
]

where hi can
stand for data fitting, regularization or other types of functions
and Ki ∈ Rki×N are arbitrary matrices, see Appendix B.
For this general case, Theorem 1 holds and the proof can
be easily derived with the same type of arguments as in
Appendix A. Additionally, Assumption 2 is naturally extended
by considering the marginalization of each auxiliary variable
ui.

III. INFERENCE

This section presents two MCMC algorithms to infer the
parameter of interest x either from the split distribution πρ in
(4) or from the split-augmented distribution πρ,α in (10). In
particular, the proposed sampling strategies are discussed for
two particular kinds of distributions frequently encountered
in signal/image processing or machine learning problems.
Additionally, a parallel between the proposed approach and
the ADMM is drawn.

A. Gibbs samplers

Two MCMC algorithms, denoted SP (see Algo. 1) and SPA
(see Algo. 2), respectively associated with the split and split-
augmented distributions (4) and (10) are presented. These
algorithms are special instances of Gibbs samplers where
samples are alternatively drawn according to the conditional

Algorithm 1: SP
Input: Functions f , g, ϕ1, ϕ2, parameter ρ, total number

of iterations TMC, number of burn-in iterations
Tbi, initialization z(0)

1 for t← 1 to TMC do
2 % Drawing the variable of interest

3 Sample x(t) according to p
(
x|z(t−1); ρ

)
(5) ;

4 % Drawing the splitting variable

5 Sample z(t) according to p
(
z|x(t); ρ

)
(6) ;

6 end

Output: Collection of samples
{
x(t), z(t)

}TMC

t=Tbi+1
asymptotically distributed according to (4).

Algorithm 2: SPA
Input: Functions f , g, ϕ1, ϕ2, param. ρ, α, total nb of

iterations TMC, nb of burn-in iterations Tbi,
initialization z(0) & u(0)

1 for t← 1 to TMC do
2 % Drawing the variable of interest

3 Sample x(t) according to p
(
x|z(t−1),u(t−1); ρ

)
(11)

;
4 % Drawing the splitting variable

5 Sample z(t) according to p
(
z|x(t),u(t−1); ρ

)
(12) ;

6 % Drawing the auxiliary variable

7 Sample u(t) according to p
(
u|x(t), z(t); ρ, α

)
(13) ;

8 end

Output: Collection of samples
{
x(t), z(t),u(t)

}TMC

t=Tbi+1
asymptotically distributed according to (10).

distributions of each variable. Precisely, SP consists in sam-
pling according to (5) and (6), while SPA is defined by the
conditional distributions (11)–(13).

As suggested in Section II, the splitting variable z has been
introduced to build faster and simpler simulating schemes
compared to the direct sampling from (3). If the conditional
distributions of x and z are easy to sample from, one can
apply Algo. 1 or Algo. 2 directly. If this is not the case
despite the variable splitting strategy, one might use surrogates
(e.g, Metropolis-Hastings [3] or data augmentation schemes)
to sample efficiently from each conditional distribution.

To be more precise, the following paragraphs discuss the
efficient sampling of two particular distributions of interest,
namely Gaussian and log-concave distributions. These dis-
tributions are frequently encountered when addressing signal
processing and machine learning problems, or may specifically
result from the split and/or augment steps induced by the
proposed schemes.

1) Gaussian distributions: When f stands for a data fitting
term, it is often assumed to be quadratic since quadratic loss
functions arise in a wide range of applicative contexts. Within
a statistical framework, this choice leads to a likelihood func-
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tion defined by a Gaussian probability distribution function.
Following the same motivation, when g is associated with
a penalization, it is often supposed to be quadratic, leading
to a Tikhonov regularizer and a Gaussian prior distribution,
e.g., used for ridge regression. More precisely, in a general
formulation, f and g are assumed to have the form

f(x) =
1

2
(x− µ1)

TQ1(x− µ1) (18)

g(x) =
1

2
(x− µ2)

TQ2(x− µ2). (19)

where the Qi are precision matrices. Then, the corresponding
target posterior distribution π is also Gaussian

π(x) = N
(
m,Q−1

)
(20)

where {
Q = Q1 +Q2 (21)
m = Q−1 (Q1µ1 +Q2µ2) . (22)

If the two terms in (21) cannot be diagonalized in the same
basis (e.g., the Fourier domain), then sampling directly from
(20) can be computationally intensive since, e.g., it requires
to invert the precision matrix Q. In the very particular case
where Q1 = HTΩH, if Q2 and HTH can be diagonalized in
the same basis, then direct sampling from the posterior π can
be achieved thanks to the specific auxiliary variable method
proposed in [38], see also Section V-A. If these requirements
are not met, this auxiliary method cannot be implemented.
Conversely, the SP and SPA strategies proposed above can
be applied to dissociate the precision matrices Q1 and Q2

in the sampling procedure. Indeed, when the divergence ϕ1
is also chosen quadratic, as in Theorem 1, the conditional
distributions associated to x and z are Gaussian with precision
matrices

Qx = Q1 +
1

ρ2
IN (23)

Qz = Q2 +
1

ρ2
IN . (24)

Again, this demonstrates the main interest of the splitting
step which makes the two precision matrices appear in two
separate distributions. Now, depending of the respective form
of Q1 and Q2, one can directly sample from these conditional
distributions or use surrogate methods [38]–[41], see Section
IV-B and Appendix C-B for more details.

2) Non-smooth log-concave distributions: More generally,
if the functions f and g are convex, then the conditional
distributions of x and z involved in SP and SPA are log-
concave. Additionally, when f (resp., g) is non-smooth, if
the divergence ϕ1 is convex, continuously differentiable and
gradient Lipschitz, sampling from the conditional distribution
associated with x (resp., z) can be achieved thanks to the
proximal Metropolis-adjusted Langevin algorithm (P-MALA)
[12] or the proximal Moreau-Yoshida-unadjusted Langevin
algorithm (P-MYULA) [20]. For instance, such cases can be
encountered when f results from a loss function robust against
outliers, e.g., for least absolute deviation regression, or when
g stands for a sparsity-inducing regularization. P-MALA

Algorithm 3: ADMM (scaled version)
Input: Functions f , g, penalty parameter ρ2,

initialization t← 0 and z(0),u(0)

1 while stopping criterion not satisfied do
2 % Minimization w.r.t. x

3 x(t) ∈ argminx− log p
(
x|z(t−1),u(t−1); ρ

)
;

4 % Minimization w.r.t. z

5 z(t) ∈ argminz− log p
(
z|x(t),u(t−1); ρ

)
;

6 % Dual ascent
7 u(t) = u(t−1) + x(t) − z(t) ;
8 % Updating iterations counter
9 t← t+ 1 ;

10 end
Output: Approximate solution of the optimization

problem x̂.

and P-MYULA are based on Langevin diffusion process
and resort to proximal operators to build Markov chains
with interesting convergence properties. The former uses an
accept/reject step in order to correct the bias introduced by
the considered approximations. On the other hand, the latter
removes this Metropolis-Hasting correction step to accelerate
the sampling and gives bounds on the convergence rate of the
Markov chains.

To summarize, instead of sampling from (3) thanks to the
direct use of the previously discussed state-of-the-art MCMC
algorithms, the proposed approach aims at preparing and
simplifying their implementations to sample according to the
conditional distributions associated with the split and split-
augmented distributions. In other words, adapted efficient
methods are applied to conduct specific and simpler sampling
steps where f and g are dissociated. Thereby, the proposed
methodology does not aim at totally replacing efficient existing
MCMC algorithms but can be interpreted as a “divide-and-
conquer” approach that simplifies the task of each sampler to
make the whole sampling algorithm faster.

B. When SPA meets ADMM

This “divide-and-conquer” idea is also at the heart of
ADMM which allows simpler minimization sub-problems to
be considered during the optimization process. This relation
with the proposed approach is strengthened by another simi-
larity between SPA and ADMM. More precisely, let consider
the particular case where ϕ1 and ϕ2 have the forms (15) and
(16) respectively (in agreement with the assumptions required
by Theorems 1 and 2), and assume that f and g are convex.
Then, computing the MAP estimates instead of sampling in
each step of Algo. 2 boils down to the ADMM [22], see Algo.
3. Within this optimization framework, z corresponds to the
splitting variable, u stands for the scaled Lagrange multiplier
and ρ−2 for the penalty parameter.

The ADMM is known to be an efficient optimization al-
gorithm for high-dimensional problems. It simplifies the opti-
mization problem by considering several simpler optimization
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sub-problems where advanced optimization tools and methods
(e.g., proximal operators) can be embedded and applied effi-
ciently. Additionally, it covers a large panel of optimization
problems and can be generalized to the case where more
than two functions f and g are considered. As noticed in the
previous section, this generalization property also applies to
the proposed SP and SPA methods, see Appendix B.

These advantages are retrieved using the proposed ap-
proach which draws a general framework to solve large-scale
Bayesian inference problems. Finally, as it will be shown in
Section V, the proposed SP and SPA algorithms need few fast
iterations (akin to ADMM) to reach the same performance as
state-of-the-art MCMC methods with good mixing properties.

IV. APPLICATION TO LINEAR GAUSSIAN INVERSE
PROBLEMS

In this section, the proposed splitting-and-augmenting strat-
egy is envisioned to address two particular instances of lin-
ear Gaussian inverse problems formulated within a Bayesian
framework. It first defines the considered class of problems
and then derives the proposed approaches on two often-studied
particular cases. Note that only the derivation of the SPA
algorithm is discussed since it naturally embeds SP. However,
the conclusions made hereafter stand also for SP. In Section V,
results of experiments associated to these two inverse problems
will be reported and discussed.

A. Linear Gaussian inverse problems

Linear Gaussian inverse problems define an archetypal class
of problems that could be efficiently tackled by the models
and algorithms introduced in Sections II and III. Suppose that
some noisy signals y are observed and one wants to infer a
hidden parameter x under the linear model

y = Hx+ e (25)

where H is a direct operator and e stands for noise or
error modeling. Then, assuming that e is a Gaussian random
vector with covariance matrix Ω−1, the likelihood distribution
associated with the observation vector y is

p
(
y|x
)
∝ exp

[
−1

2
(Hx− y)

T
Ω (Hx− y)

]
. (26)

In most applicative contexts, H is not invertible and inferring
the unknown parameter vector x from the observation vector
y under the linear model (25) is known to be an ill-posed
inverse problem. To alleviate this issue, a convenient and
widely admitted approach consists in adopting some sort of
regularization. Within a Bayesian setting, this is done by
assigning a prior distribution to the unknown parameter vector
x. Assuming that this prior distribution is given by the general
form

p (x) ∝ exp
[
−g(x)

]
, (27)

it follows by applying Bayes’ rule that the posterior dis-
tribution of x has the same form as (3) where f(x) =
1

2
(Hx− y)

T
Ω (Hx− y). As a consequence, the proposed

methodology can be implemented to sample efficiently from

a close approximation of this posterior distribution and use
these samples to infer the hidden parameter x. In the sequel,
two standard problems involving Gaussian and total variation
(TV) prior distributions, respectively, are considered. One can
easily verify that Assumptions 1 and 2 along with Theorem 1
hold for all these problems.

B. Deconvolution with a smooth prior

In the setup considered in this paragraph, the function g in
(27) is chosen to be quadratic as in (19) with µ2 = 0N and
Q2 = γLTL, where L is a circulant matrix associated to a
Laplacian filter. These choices lead to a frequently encountered
smoothing conjugate Gaussian prior N

(
0N ,

(
γLTL

)−1
)

, for
instance used in [42]–[44]. Note that this Gaussian prior distri-
bution is degenerated since constant images are not penalized
leading to the first eigenvalue of Q2 being equal to zero. Thus
the posterior distribution (20) becomes

π(x|y) = N
(
m,Q−1

)
(28)

where {
Q = HTΩH+ γLTL (29)
m = Q−1HTΩy. (30)

Additionally, in the sequel, the operator H will be assumed
to be an N × N circulant convolution matrix associated
to a time/space-invariant blurring kernel. Finally, the noise
covariance matrix is assumed to be diagonal, i.e., Ω−1 =
diag[σ2

1 , . . . , σ
2
N ]. Direct sampling according to the posterior

distribution (28) is a challenging task, mainly due to the
presence of the precision matrix Ω. Indeed, as emphasized in
paragraph III-A1, the two terms in (29) cannot be diagonalized
in the same basis (e.g. Fourier) which leads to computational
problems in high dimension.

Conversely, assuming that ϕ1 and ϕ2 have the form (15)
and (16) with parameters ρ and α, the proposed SPA Gibbs
algorithm samples according to the conditional distributions

p(x|z,u) = N
(
mx,Gx

−1
)

(31)

p(z|x,u) = N
(
mz,Gz

−1
)

(32)

p(u|x, z) = N
(
mu,Gu

−1
)

(33)

where 

Gx = HTΩH+
1

ρ2
IN (34)

Gz = γLTL+
1

ρ2
IN (35)

Gu =
α2 + ρ2

α2ρ2
IN . (36)

Thanks to the splitting-and-augmenting approach, these three
sampling steps are much easier to handle than the direct
sampling from the target posterior distribution (28). Indeed,
sampling from (31) can be conducted by using the auxiliary
method of [38] to deal separately with HTH from the
coupling induced by Ω (see Appendix C-B). Additionally,
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sampling from (32) can be efficiently achieved in the Fourier
domain (see Appendix C-A for details). Finally, sampling
from (33) is straightforward since the covariance matrix is
diagonal. Again, as previously noticed in Section III and more
particularly in paragraph III-A1 dedicated to Gaussian distribu-
tions, the proposed splitting-and-augmenting approach allows
specific and simpler sampling steps to be conducted where the
difficulties inherent to f (here the Gaussian likelihood) and g
(here the Gaussian prior) have been dissociated. The strategy
developed in this paragraph will be experimentally assessed
in paragraph V-A.

C. Image inpainting with total variation

TV has become an ubiquitous regularization to solve
imaging problems [45]–[47]. Within the considered Bayesian
framework, it consists in choosing the g function in (27)
as g(x) = βTV(x) where β > 0 and TV(x) =∑

1≤i,j≤N

∥∥∥(∇x)i,j∥∥∥
2

(∇x is the two-dimensional discrete
gradient of x). This type of prior is used for instance in image
inpainting problems, which consist in recovering an original
image x ∈ RN from the noisy and partial measurements
y ∈ RM under the linear model (25). Note that, in general,
M ≪ N . Here, the noise is assumed to be white and Gaussian
such that Ω−1 = σ2IM and the operator H stands for the
matrix associated with a damaging binary mask. Under this
setting, the posterior distribution of x (3) becomes

p
(
x|y
)
∝ exp

[
− 1

2σ2
∥Hx− y∥22 − βTV(x)

]
. (37)

Direct sampling from this posterior is a challenging task
mainly due to i) the generally high dimension of the image
to be recovered, ii) the non-conjugacy of the TV-based prior,
leading to a non-standard posterior distribution and iii) the
non-differentiability of g which precludes the use of some ad-
vanced simulation techniques, e.g., Hamiltonian Monte Carlo
algorithms [11]. Conversely, instead of directly sampling from
this posterior distribution, the proposed approach is applied.
Again, assuming that ϕ1 and ϕ2 have the forms (15) and
(16) with parameters ρ and α, respectively, the conditional
distributions associated to SPA are

p(x|z,u) ∝ exp

[
− 1

2σ2
∥Hx− y∥22

]
× exp

[
− 1

2ρ2
∥∥x− (z− u)

∥∥2
2

]
(38)

p(z|x,u) ∝ exp

[
−βTV(z)− 1

2ρ2
∥∥z− (x+ u)

∥∥2
2

]
(39)

p(u|x, z) ∝ exp

[
− 1

2α2
∥u∥22 −

1

2ρ2
∥∥u− (z− x)

∥∥2
2

]
(40)

Here, assuming that ϕ1 and ϕ2 are quadratic allows to retrieve
Gaussian distributions for (38) and (40). Sampling from (40) in
high-dimension is not a problem since the covariance matrix is
constant diagonal. However, the covariance matrix associated
to (38) is

(
σ−2HTH+ ρ−2IN

)−1
, which is more complex to

handle. Hopefully, the direct operator H is a M × N binary
matrix which can be obtained by taking a subset of rows of the
identity matrix in dimension N . Due to this simple structure,

HHT = IM and by using the Sherman-Morrison-Woodbury
formula, it follows that(

1

σ2
HTH+

1

ρ2
IN

)−1

= ρ2

(
IN −

ρ2

σ2 + ρ2
HTH

)
.

(41)

The matrix HTH corresponds to an identity matrix with
some zeros in the diagonal (corresponding to the missing
pixels). Thereby, the covariance matrix (41) is diagonal and
the sampling from (38) can be conducted efficiently with the
exact perturbation-optimization (E-PO) algorithm [39].

As previously discussed in paragraph III-A2, the condi-
tional distribution (39) being log-concave, one can sample
efficiently from the latter in high-dimension with P-MALA
or P-MYULA. In the sequel, P-MYULA will be preferred
because its mixing properties are better than P-MALA and
the estimation error is of the order of 1% using well-defined
parameters [20]. As a conclusion, as advocated earlier, the
proposed splitting-and-augmenting approach allows simpler
sampling steps to be efficiently conducted thanks to dedicated
algorithms.

V. EXPERIMENTS

This section reports results of experiments aimed at com-
paring the proposed methodology with that of current state-
of-the-art (optimization and Bayesian) methods for the inverse
problems discussed in Section IV. All the results presented in
this section have been obtained using MATLAB, on a com-
puter equipped with an Intel Xeon 3.70 GHz processor, with
16.0 GB of RAM, and running Windows 7. The corresponding
MATLAB codes to reproduce some parts of these experiments
are available on GitHub at https://github.com/mvono/2019-
TSP-split-Gibbs-sampler. Other examples of the proposed
approach on machine learning problems can be found in [30],
[48].

A. Deconvolution with a smooth prior

1) Problem considered: The Gaussian sampling problem
introduced in Section IV-B is considered. A blurred and noisy
image y ∈ RM of size 512× 512 (M = 262144) is observed.
The purpose is then to recover the original image x ∈ RN of
size 512× 512 (N = 262144).

2) Experimental design: The diagonal elements σ2
i of the

noise covariance matrix Ω−1 have been randomly drawn
according to the mixture σi ∼ (1− β)δκ1

+ βδκ2
(κ1, κ2 > 0

and 0 < β < 1) with β = 0.35, κ1 = 13 and κ2 = 40.
This particular structure for Ω−1 may be not physical but
permits to show the interest of the proposed approach. The
prior parameter γ has been set to γ = 6× 10−3.

The proposed SP and SPA algorithms SP are compared to
RJ-PO [40] and to the algorithms denoted AuxV1 and AuxV2
proposed in [38]. The parameters associated to SP and SPA
have been set to ρ = 20 and (ρ, α) = (20, 1), respectively. RJ-
PO has been run using conjugate gradient (CG) algorithm as
the required linear solver whose tolerance has been adapted
to reach an acceptance rate of 0.9. The number of burn-in
iterations has been set to Tbi = 200 for AuxV1, RJ-PO, SP
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TABLE II
GAUSSIAN SAMPLING: AVERAGE SNR AND PSNR (OVER 25

OBSERVATIONS) ASSOCIATED TO THE MMSE ESTIMATES.

SNR (dB) PSNR (dB)
RJ-PO 19.58 25.24
AuxV1 19.58 25.24
AuxV2 19.60 25.26
SP 19.58 25.23
SPA 19.58 25.23

and SPA and to Tbi = 2200 for AuxV2 (due to its slower
mixing properties, see below). For each MCMC algorithm, 800
samples obtained after the burn-in period have been used. The
numbers of iterations TMC and Tbi were empirically chosen
by graphically inspecting the behavior of the Markov chains
produced by the samplers.

The performances of the different approaches have been
assessed by the signal-to-noise ratio (SNR) and the peak
signal-to-noise ratio (PSNR)

SNR = 10 log10
∥x∥22
∥x− x̂∥22

(42)

PSNR = 10 log10
2552

N−1 ∥x− x̂∥22
(43)

where x̂ refers to the MMSE estimate of x approximated by
empirical averages of the samples generated by the MCMC
algorithms. The performance results have been averaged over
25 Monte Carlo runs.

3) Results: Table II shows the average SNR and PSNR
associated to the MMSE estimate for the different algorithms.
The standard deviation associated to these results is the same
for the different methods and is equal to 0.02 and all the
algorithms share similar performance results. However, we
emphasize that the computational cost of each algorithm can
differ widely as shown by Table III.

Table III presents the numerical complexity related to one
iteration of each algorithm along with the average number
of iterations performed and the average computational time
for each algorithm (over the 25 Monte Carlo runs). The
complexity of N refers to the sampling from an univariate
normal distribution. The complexity of O(N logN) refers to
the use of the Fourier transform as the matrices H and L are
circulant and thereby diagonalizable in the Fourier domain.
One can denote that SP, SPA, AuxV1 and AuxV2 share
a roughly similar numerical complexity (for one iteration)
whereas RJ-PO is slower because of the use of the CG method.
The latter has a complexity of O(NCGN logN) where NCG is
the number of iterations performed by the CG method. In this
example, NCG = 155 on average (after the burn-in period). On
the other hand, the average computing times associated to each
MCMC algorithm widely differ. RJ-PO is the slowest mainly
due to the number of CG iterations performed at each iteration.
Note that RJ-PO could be accelerated with a preconditioned
conjugate gradient by using circulant preconditioners, for
instance. AuxV1 appears to be the fastest. However, one has to
recall that this algorithm was explicitly designed for this type

TABLE III
GAUSSIAN SAMPLING: COMPUTATIONAL COMPLEXITY RELATED TO ONE

ITERATION, AVERAGE NUMBER OF ITERATIONS AND AVERAGE
COMPUTATIONAL TIME FOR EACH ALGORITHM.

computational complexity # iterations time (s)
RJ-PO O(NCGN logN) + (M +N)N 103 4192
AuxV1 O(N logN) + 2NN 103 37
AuxV2 O(N logN) + 4NN 3× 103 209
SP O(N logN) + 3NN 103 62
SPA O(N logN) + 4NN 103 86

Fig. 2. Gaussian sampling: average chain autocorrelation functions of SP
(green), SPA (blue), AuxV1 (red), AuxV2 (magenta) and RJ-PO (cyan).
Shaded areas represent the intervals corresponding to the standard deviation
computed over 25 trials.

of inference problems and cannot be used directly for more
general Gaussian sampling tasks. SP and SPA appear to have
reasonable computational costs compared to AuxV1. Finally,
AuxV2 needs more iterations and thereby more time to reach
the same level of performance as the other approaches. This
algorithm can be used in more general cases than AuxV1 but
appears to be roughly 3 times more costly than the proposed
approach which covers a wider scope of sampling problems.
This high computational cost is mainly related to the poor
mixing properties of AuxV2 compared to the other methods
as drawn by Fig. 2.

Fig. 2 compares the autocorrelation functions (using
− log π(x|y) as a scalar summary) of AuxV1, AuxV2, RJ-
PO, SP and SPA averaged over the 25 Monte Carlo runs,
where only samples obtained after the burn-in period have
been considered. The shaded regions depicted in Fig. 2
represent the standard deviation ranges associated to each
MCMC algorithm. One can denote that all the algorithms
share good mixing properties except AuxV2 which explores
less efficiently the parameter space. This result is consistent
with the findings highlighted in [38] which pointed out that
the quality of the samples generated by RJ-PO and AuxV1
was better than those generated by AuxV2.

4) Discussion: For this specific experiment, the proposed
general splitting-and-augmenting framework has shown that
it can compete with efficient algorithms designed only for
this type of sampling problems (e.g. AuxV1). Additionally,
it proves to be more efficient than algorithms designed for
wider Gaussian sampling tasks (e.g. AuxV2 and RJ-PO). The
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Fig. 3. Set of 256×256 images used. From top left to bottom right: balloons,
baboon, elaine, clock, donna, house, peppers, cameraman, boat.

performance of the proposed approach is strengthened by the
fact that SP and SPA have also demonstrated to be more
efficient than state-of-the-art MCMC algorithms designed to
sample from other types of distributions, such as log-concave
densities, as illustrated in the next paragraph V-B.

B. Image inpainting with total variation

1) Problem considered: The image inpainting problem
introduced in Section IV-C and also addressed in [26] is
considered here. Fig. 3 presents the nine 256 × 256 original
gray-level images used for this experiment. The observation
vector denoted y consists of 60% randomly selected pixels
of the original image x, corrupted by a white Gaussian noise
with SNR of 40dB.

Fig. 4a and 4b present, as an example, the original Camera-
man image and one of its associated observations where the
missing pixels are depicted in white. The restoration results
for this image are also presented in Fig. 4.

2) Experimental design: The two proposed algorithms SP
and SPA, leading to sampling from (38)-(40), are compared
with the split augmented Lagrangian shrinkage algorithm
(SALSA) [26], which can be interpreted as a deterministic
counterpart of SPA, as emphasized in paragraph III-B. SALSA
solves the minimization problem resulting from the MAP
inference associated with the posterior distribution (37) by
using ADMM. These algorithms have been also compared
with P-MYULA specifically designed to sample from possibly
non-smooth log-concave distributions (see paragraph III-A2).
The number of burn-in iterations has been set to Tbi = 200
for SP and SPA and to Tbi = 95200 for P-MYULA (due to
slower mixing, see below). For each MCMC algorithm, 4800
samples obtained after the burn-in period have been used to
approximate the MMSE estimator by empirical averaging.

Sampling from (39) has been done with P-MYULA (λ = ρ2

and γ = ρ2/4) using Chambolle’s algorithm [49] to compute
the proximal operator of g. The SP and SPA parameters have
been set to ρ = 2.8, α = 1 and β = 0.2 for Algo. 1 and to
ρ = 2 and β = 0.2 for Algo. 2. In particular, the choice of ρ
is discussed thereafter.

The performance of the estimators has been measured by
computing the improvement in signal-to-noise ratio (ISNR)
defined as

ISNR = 10 log10
∥x− y∥22
∥x− x̂∥22

(44)

(a) (b)

(c) (d)
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Fig. 4. Image inpainting with TV regularization using SPA: (a) original
image; (b) noisy observation with missing pixels depicted in white; (c) MMSE
estimate of x; (d) MMSE estimate of z; (e) MMSE estimate of u; (f) Pixel-
wise 90% credibility intervals.

where x̂ refers to the MMSE (resp. MAP) estimate of x for
SP, SPA and P-MYULA (resp., SALSA). This performance
measure has been averaged over 25 Monte Carlo runs.

3) Influence of α: Fig. 5 highlights the potential benefit
of the data augmentation step described in II-B. Thus, the
autocorrelation functions associated to SP and SPA for differ-
ent values of ρ and α are depicted. The latter were obtained
by using 104 samples and by considering the Markov chains
from their first iteration (no burn-in period has been considered
here). The results are averaged over 10 independent runs. The
standard deviations being very small, they are not depicted in
Fig. 5. The effect of α for intermediate and large values of
ρ (ρ ≥ 1 in this case) is not significant. However, as ρ de-
creases, the impact of the data augmentation scheme governed
by α on the autocorrelation function increases significantly.
This behavior is expected since this data augmentation was
introduced to bring an additional degree of freedom compared
to the SP scheme when ρ is small. Although the limiting case
ρ→ 0 is not considered in this experiment, it could be desired



10 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ??, NO. ??, ?? 2018

1 100 200 300 400 500
Lag

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

C
F

ρ = 10−2

SP

10−4

10−3

10−2

10−1

100

101

α

SPA

1 100 200 300 400 500
Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
C

F

ρ = 10−1

SP

10−4

10−3

10−2

10−1

100

101

α

SPA

1 10 20
Lag

0.00

0.05

0.10

0.15

0.20

0.25

A
C

F

ρ = 100

SP

10−4

10−3

10−2

10−1

100

101

α

SPA

Fig. 5. Image inpainting: effect of the parameter α (associated to the
data augmentation step) for different values of the parameter ρ on the
autocorrelation functions of SPA (from guppiegreen to blue) and SP (red).
The results were averaged over 10 independent runs.

in some practical scenarios. In such cases, considering the
data augmentation step proposed in the manuscript can bring a
significant benefit concerning the exploration of the parameter
space.

4) Influence of ρ: Fig. 6 shows the ISNR obtained with
SPA on the Cameraman image w.r.t. the number of iterations
and for different values of the parameter ρ ranging from
ρ = 1 (blue) to ρ = 8 (yellow). High values of ρ (yellow
to green) rapidly lead to a stable but not optimal ISNR with
low variance. Conversely, small values of ρ (e.g. ρ = 1, dark
blue) struggle to lead to an acceptable ISNR in a reasonable
computational time. On the other hand, intermediate values
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Fig. 6. Image inpainting: ISNR associated to SPA MMSE w.r.t. the number of
iterations (in log-scale for the main figure and in normal-scale for the zoomed
one) for different values of ρ.

TABLE IV
IMAGE INPAINTING: AVERAGE RESULTS OVER 25 DIFFERENT

OBSERVATION VECTORS IN TERMS OF ISNR FOR VARIOUS ALGORITHMS
AND IMAGES. THE ISNR ASSOCIATED TO P-MYULA, SP AND SPA WAS

COMPUTED WITH THE MMSE ESTIMATOR.

SALSA P-MYULA SP SPA
Balloons 26.18 23.00 26.19 26.18
Baboon 14.37 13.35 14.60 14.59
Elaine 23.61 21.21 23.86 23.84
Clock 25.72 24.50 25.45 25.42
Donna 24.71 21.69 23.87 23.82
House 20.21 19.59 20.43 20.43
Peppers 20.35 19.20 20.22 20.20
Cameraman 19.48 18.76 19.34 19.34
Boat 20.81 19.80 20.74 20.71

of ρ (e.g. ρ ∈ [2, 4], blue to green) appear to be a trade-
off between speed and precision of the estimation. Thus, this
range of values manages to lead, in a reasonable number of
iterations, to an ISNR competing with the one obtained by
SALSA (see Table IV).

5) Performance results: Table IV shows the average ISNR
obtained with the different algorithms for each image depicted
in Fig. 3. P-MYULA applied to the original target distribution
(3) presents a lower ISNR on each image than the three other
algorithms. However, when P-MYULA is used within the SP
or SPA frameworks, it manages to reach average performance
similar to SALSA. Note that the three MCMC approaches,
contrary to the optimization algorithm SALSA, also carry
credibility intervals for each pixel of the image to infer x,
see Fig. 4(f).

Table V presents the numerical complexity resulting from
one iteration along with the average number of iterations
performed and the average computational time for each al-
gorithm. The complexity of O(N2) refers to matrix-vector
multiplication, that of O(N) to the use of a proximal operator
and N stands for the sampling from an univariate normal
distribution. Note that the number of iterations and thereby
the computational time of SALSA has been adapted to each
observation to reach a target reconstruction error. This has
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TABLE V
IMAGE INPAINTING: COMPUTATIONAL COMPLEXITY RELATED TO ONE

ITERATION, AVERAGE NUMBER OF ITERATIONS PERFORMED AND
AVERAGE COMPUTATIONAL TIME FOR EACH ALGORITHM.

computational complexity # iterations time (s)
SALSA O(N2) +O(N) 43 1

P-MYULA O(N2) +O(N) +NN 105 3408
SP O(N2) +O(N) + 3NN 5× 103 207
SPA O(N2) +O(N) + 4NN 5× 103 215

not been the case for the MCMC algorithms where the total
number of iterations has been fixed beforehand. Note that
the cost of one MCMC iteration is roughly equivalent to the
cost of one iteration in an ADMM framework. The difference
in computational time is mainly related to the number of
iterations performed by each algorithm. P-MYULA took on
average roughly 3400 longer time than SALSA. Much more
efficient, SP and SPA allowed to reduce the computing time
w.r.t. P-MYULA by roughly 16 by embedding P-MYULA
and by simplifying its task. This gain of computational time
is mainly related to the Lipschitz constant of the gradient
of the smooth potential used within P-MYULA. Indeed, the
convergence of P-MYULA, similarly to forward-backward
splitting algorithms in optimization, is driven by the Lipschitz
constant of the gradient of the smooth term in the potential
f+g. Namely, in this experiment, the Lipschitz constant Lf of
∇f is given by Lf = σ−2λmax(H

TH), where λmax(H
TH)

is the largest eigenvalue of HTH. This constant is highly
dependent on the problem, more precisely on the forward
operator H and cannot be tuned. On the contrary, if the
proposed variable splitting approach is used, P-MYULA is
now embedded in the Gibbs sampling scheme and is used
to sample from (39). In (39), the relevant Lipschitz constant
is L′

f = ρ−2: this constant now can be chosen carefully
to improve the mixing and accelerate the convergence of P-
MYULA within SPA, see Fig. (6).

Fig. 4 shows the results obtained by SPA on the Cameraman
image. Those obtained by SP were similar and are omitted
here for brevity. The MMSE estimators of x and z are very
close, ensuring that the proposed variable splitting method
behaves successfully. The variable splitting residuals contained
in u appear to be close to 0 for most pixels but present a
certain structure. Thus, positive and negative residuals seem
to share a complementary structure near the boundaries of
objects in the image. This particular structure of the residuals
is confirmed by the analysis of the credibility intervals: there
is more uncertainty (of about 80 grey-levels) on the object
contours of the image. The same conclusion was drawn in [12]
when P-MALA was applied to an image deblurring problem
with total variation.

Fig. 7 compares the average autocorrelation functions (using
− log p(x|y) as a scalar summary and obtained after the burn-
in period) of SP, SPA and P-MYULA on the Cameraman
image. The shaded regions depicted in Fig. 7 represent the
standard deviation ranges associated to each MCMC algo-
rithm. SP and SPA present better mixing properties than P-
MYULA, showing that the proposed approaches successfully

Fig. 7. Image inpainting: average chain autocorrelation functions of SP
(green), SPA (blue) and P-MYULA (red). Shaded areas represent the intervals
corresponding to the standard deviation computed over 25 trials.

and more efficiently explore their respective parameter space.
Additionally, although the average autocorrelation functions of
SP and SPA are similar, the data augmentation scheme within
SPA led to a Markov chain with more stable mixing properties
over different observations (see the green and blue shaded
areas). Note that the potential benefit of the data augmentation
step detailed in Section II-B increases when ρ decreases.

6) Discussion: The expectations from MCMC algorithms
like SP, SPA and P-MYULA are threefold. Firstly, to infer
the hidden image x, the MCMC methods are expected to
efficiently explore the parameter space, in particular nearby
the high potential regions. Secondly, the computational cost
of these algorithms should remain reasonable compared to
SALSA. Finally, they have to produce Markov chains with
good mixing properties in order to explore the entire probabil-
ity distribution and thus provide accurate credibility intervals.

Based on the previous results, SP and SPA appear as a very
good trade-off between these three expectations: mixing prop-
erties, efficient exploration and reasonable computational cost.
The latter expectation is particulary satisfied. Yet, even though
the computing times associated to the proposed approaches are
reasonable, they are roughly 200 times higher than SALSA
for a problem in high dimension (N = 65536). This overhead
cost results from the exploration of the parameter space: this is
the price to pay to derive confidence intervals on the inferred
parameter, and it seems difficult to get cheaper methods.

VI. CONCLUSION

This paper introduced a new general Bayesian framework
which aims at solving large-scale inference problems. To de-
rive the proposed methodology, two new optimization-driven
hierarchical Bayesian models and their associated MCMC
algorithms, inspired from variable splitting and data augmenta-
tion, were introduced. Similarly to the ADMM in an optimiza-
tion context, the proposed approach could be summarized as
a “divide and conquer” method. Thus, the derived algorithms
lead to simpler sampling steps so that efficient state-of-the-art
MCMC algorithms can be embedded for each sampling task.
Note that the proposed approach can also be used to distribute
MCMC methods on multiples machines as detailed in [30].
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The versatility and efficiency of the proposed algorithms
have been assessed on two often-studied problems and com-
pared to recent state-of-the-art optimization and sampling
approaches. Based on these results, SP and SPA appear to be
more efficient while sharing a large scope of applications. Ad-
ditionally, their reasonably low computational cost compared
to optimization algorithms helps to reduce the gap between
optimization and simulation-based approaches while providing
precious credibility intervals.

Future works will focus on other forms for the functions f ,
g, ϕ1 and ϕ2 to illustrate the broad scope of applications of
the proposed approach. In particular, it will include inference
problems involving non-convex target distributions. Finally,
this paper presented SP and SPA as efficient algorithms
designed to solve an inference problem. They could also
be used to approximate complex target distributions. In this
approximation context, future works will include a theoretical
analysis of the proposed approach.

APPENDIX A
PROOF OF THEOREM 1

Proof: The usual target distribution (3) has the form

π(x) =
exp

[
−f(x)− g(x)

]∫
RN exp

[
−f(x)− g(x)

]
dx
, (45)

and has been assumed to define a proper probability distribu-
tion. By denoting

pϕ1
(x, z; ρ) ≜

exp
[
−ϕ1(x, z; ρ)

]∫
RN exp

[
−ϕ1(x, z; ρ)

]
dz
, (46)

the split-distribution (4) writes

πρ(x, z) =
exp

[
−f(x)− g(z)

]
pϕ1

(x, z; ρ)∫
RN

∫
RN exp

[
−f(x)− g(z)

]
pϕ1

(x, z; ρ)dzdx
.

(47)

Let define

pρ(x) =

∫
RN

πρ(x, z)dz. (48)

Under the two distributions (45) and (48), we are interested
in showing that∥∥π − pρ∥∥TV

=

∫
RN

∣∣π(x)− pρ(x)∣∣ dx (49)

tends towards zero when ρ2 → 0.
Assumption 1 implies that

lim
ρ→0

exp
[
−f(x)− g(z)

]
pϕ1

(x, z; ρ)

= exp
[
−f(x)− g(z)

]
δx(z). (50)

Since ∀ρ > 0, exp
[
−f(x)− g(z)

]
pϕ1(x, z; ρ) has been

supposed to be integrable, see Section II-A, it follows from
the dominated convergence theorem that

lim
ρ→0

∫
RN

∫
RN

exp
[
−f(x)− g(z)

]
pϕ1

(x, z; ρ)dzdx (51)

=

∫
RN

∫
RN

exp
[
−f(x)− g(z)

]
δx(z)dzdx (52)

=

∫
RN

exp
[
−f(x)− g(x)

]
dx. (53)

Combining (50) and (53), it follows

lim
ρ→0

πρ(x, z) =
exp

[
−f(x)− g(z)

]
δx(z)∫

RN exp
[
−f(x)− g(x)

]
dx
. (54)

Using one more time the dominated convergence theorem, as
in (52) and (54) leads for all x ∈ RN to

lim
ρ→0

pρ(x) =
exp

[
−f(x)− g(x)

]∫
RN exp

[
−f(x)− g(x)

]
dx

= π(x). (55)

Finally, Scheffé’s lemma [50] ensures the convergence of
pρ towards π in total variation, that is

lim
ρ→0

∥∥π − pρ∥∥TV
= lim

ρ→0

∫
RN

∣∣π(x)− pρ(x)∣∣dx = 0. (56)

APPENDIX B
CASE OF MULTIPLE FUNCTIONS hi

Assume that the problem considered involves the introduc-
tion of Nh functions hi along with Nh observation operators
Ki ∈ Rki×N , i ∈ {1, . . . , Nh}. Thereby, the usual target
distribution takes the form

π(x) ∝ exp

− Nh∑
i=1

hi(Kix)

 . (57)

Remark 1: In the case where Nh = 2 and K1 = K2 = IN ,
the usual target distribution defined in (3) is retrieved.

A. Derivation of SP

In order to simplify the sampling procedure, let introduce
Nh splitting variables denoted z1, z2, . . . , zNh

∈ Rki , a posi-
tive parameter ρ and Nh divergences ϕi defined on Rki ×Rki

such that the underlying joint probability distribution has the
form

p(x, z1, z2, . . . , zNh
; ρ) ∝ exp

− Nh∑
i=1

hi(zi)

+ϕi (Kix, zi; ρ)
]
. (58)

Thereby, the generalized SP implies the sampling from the
conditional distributions

p(x|zi,i∈{1,...,Nh}; ρ) ∝ exp

− Nh∑
i=1

ϕi (Kix, zi; ρ)

 , (59)

p(zi|x; ρ) ∝ exp
[
−hi(zi)− ϕi (Kix, zi; ρ)

]
, (60)

for all i ∈ {1, . . . , Nh}.

B. Derivation of SPA

In the same manner, let introduce Nh splitting and
auxiliary variables denoted z1, z2, . . . , zNh

∈ Rki and
u1,u2, . . . ,uNh

∈ Rki , respectively. Additionally, let intro-
duce positive parameters ρ and α, Nh divergences ϕi defined
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on Rki × Rki and Nh functions ψi defined on Rki such that
the underlying joint probability distribution has the form

p(x, zi,i∈{1,...,Nh},ui,i∈{1,...,Nh}; ρ, α) ∝

exp

− Nh∑
i=1

hi(zi) + ϕi (Kix, zi − ui; ρ) + ψi(ui;α)

 .
(61)

The generalized SPA implies the sampling from the condi-
tional distributions

p(x|zi,ui; ρ) ∝ exp

− Nh∑
i=1

ϕi (Kix, zi − ui; ρ)

 , (62)

p(zi|x,ui; ρ) ∝ exp
[
−hi(zi)− ϕi (Kix, zi − ui; ρ)

]
, (63)

for all i ∈ {1, . . . , Nh}, and

p(ui|x, zi; ρ, α) ∝ exp
[
−ψi(ui;α) (64)

−ϕi (Kix, zi − ui; ρ)
]
,

for all i ∈ {1, . . . , Nh}.

APPENDIX C
EFFICIENT GAUSSIAN SAMPLING IN HIGH DIMENSION

In this Appendix, notations are those of Section IV-B.
Suppose that one wants to sample efficiently from the high-
dimensional Gaussian conditional distributions

p(z|x,u) = N
(
mz,Gz

−1
)

(65)

p(x|z,u) = N
(
mx,Gx

−1
)

(66)

where, in particular,
Gz = γLTL+

1

ρ2
IN . (67)

Gx = HTΩH+
1

ρ2
IN (68)

A. Efficient sampling from (65)

The matrix L was assumed to be a circulant matrix. Thereby,
the latter can be diagonalized in the Fourier domain such that

L = FHΛLF, (69)

where F and FH are unitary matrices (FHF = FFH = IN )
associated with the Fourier and inverse Fourier transforms. ΛL

is the diagonal counterpart of L in the Fourier domain. Using
(69), the precision matrix defined in (67) has the form

Gz = γFHΛL
HFFHΛLF+

1

ρ2
IN

= γFHΛL
HΛLF+

1

ρ2
IN (70)

Then, the counterpart of Gz in the Fourier domain is diagonal
and has the form

ΛGz = γΛL
HΛL +

1

ρ2
IN . (71)

Using (71), one can efficiently sample from (65) by drawing
N independent Gaussian samples in the Fourier domain.

B. Efficient sampling from (66)

Unfortunately, although the matrix H was assumed circu-
lant, the first term in (68) cannot be diagonalized in the Fourier
domain. To cope with this problem, the auxiliary method of
[38] is used. An additional variable v ∈ RN is introduced
such that the conditional distributions of x and v are

p(x|z,u,v) = N
(
m̃x, G̃

−1
x

)
(72)

p(v|x) = N
(
mv,Gv

−1
)

(73)

where, in particular,
G̃x =

1

µ1
HTH+

1

ρ2
IN (74)

Gv
−1 =

1

µ1
IN −Ω. (75)

Remark 2: The positive parameter µ1 is such that
µ1 ∥Ω∥S < 1 (∥.∥S stands for the spectral norm of a matrix)
ensuring that (75) is positive definite.

As in Appendix C-B, the matrix H (assumed circulant)
can be diagonalized in the Fourier domain. Under these two
conditional distributions, x can be efficiently drawn in the
Fourier domain and v can be efficiently sampled in RN as
Ω was assumed diagonal.
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