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ABSTRACT

We present a new application of a signal processing tech-
nique calledfuzzy clusteringfor automatic identification
of various structures seen in EIT images. This technique
gives for each pixel a probability of belonging to a par-
ticular class. By assigning each pixel to the class for
which it has the greatest probability of belonging, we ob-
tain image segmentations. In EIT 19.5 nm images we
distinguish the Quiet Sun, Coronal Holes, and the Active
Regions, whereas in EIT 30.4 nm we extract the plages
and part of the network boundaries. We also show how a
multiwavelength approach leads to an improved segmen-
tation of the different coronal structures.
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1. INTRODUCTION

Identifying the respective contributions of different struc-
tures to the solar irradiance is now a key issue in solar
physics, with implications to Sun-Earth relationships. In
this paper, we propose an algorithm for the automatic seg-
mentation of different structures seen in EIT images. The
method relies on a fuzzy clustering on relevant feature de-
scriptors representing image pixels. For coronal images,
we are able to separate the Quiet Sun, Coronal Holes,
and Active regions. In the transition region, we can dis-
tinguish the chromospheric network and the plages from
the dark intra-cell regions.

Several methods of segmentation have been proposed in
the solar physics literature, of which we name here but a
few. Worden et al. (1999) propose an ad hoc method for
segmenting 30.4 nm images, where the parameters of the
procedure are derived by trial and errors. The aim there is
to study the respective contributions of the different struc-
tures (plage, enhanced network, active network, quiet
chromosphere) to the solar He II irradiance. Turmon et

al. (2002) propose a Bayesian image-segmentation tech-
nique for treating SOHO/MDI data. Finally, Delouille et
al. (2005) present a method for segmenting EIT images
based on the local value of the wavelet spectrum.

This paper is organized as follows. Section 2 introduces
the fuzzy segmentation method and describes its parame-
ters. Section 3 presents the results, and Section 4 dis-
cusses future extension of the method.

2. THE FUZZY CLUSTERING ALGORITHM

The main idea behind fuzzy clustering is that an object
can belong simultaneously to more than one class and
does so to varying degrees calledmemberships. In this
paper, we use thepossibilistic clustering, see Section 2.2.
The memberships generated by this algorithm offer sev-
eral advantages. First, whenever the user overspecifies
the number of clusters, the algorithm will replicate one
class. The correct number of clusters will thus still ap-
pear in the segmentation, in contrast to classical cluster-
ing algorithms which typically divide artificially a cluster
in two parts in such case. Second, the fuzzy nature of the
clustering makes it possible to overcome the clear-cut na-
ture of pattern descriptions: even if the chosen descriptors
are not the best ones, the algorithm may still be robust to
this choice. Third, experts have sometimes problems in
determining precisely the borders of the different struc-
tures. It is thus convenient to define memberships, for
which a large value indicates increased confidence that a
pixel belongs to a particular structure. Finally, it is pos-
sible to include some human expertise knowledge in the
method, in order, e.g. to alleviate some ambiguity near
the edges of coronal structures.

The first fuzzy clustering method that was developed is
the C-means fuzzy clustering algorithm (Bezdek (1981)),
that we now recall.



2.1. The fuzzy C-means algorithm

In this preliminary study, we segment based on the inten-
sity of the image expressed in DN. The pixel valuesxj

are used here asfeatures, also calleddescriptorsin pat-
tern recognition terminology. In general, we denote by
X = {xj}1≤j≤N the set ofp-dimensional feature vec-
torsxj ∈ Rp of an image.

The fuzzy C-means algorithm (FCM) is an iterative
method, which tries to separate the setX into C compact
clusters. Every cluster is represented by its center, de-
notedbi. FCM associates with every feature vectorxj ∈
Rp a fuzzy membership gradeuij ∈ [0, 1], 1 ≤ i ≤ C
in each of theC classes. This membershipuij repre-
sents the degree to whichxj belongs to classi. The set
U = {uij}{1≤i≤C,1≤j≤N} is called the fuzzy partition of
X. Let B = {bi}1≤i≤C be the set of cluster centers. The
FCM uses an iterative optimization procedure to approx-
imate the minima of a constrained objective function:

J(B,U,X) =
C∑

i=1

N∑
j=1

um
ij d(xj , bi)

subject to

(∀i ∈ {1 · · ·C})
N∑

j=1

uij < N (1)

(∀j ∈ {1 · · ·N})
C∑

i=1

uij = 1 (2)

wherem is a parameter that controls the degree of fuzzi-
fication (m = 1 means no fuzziness), andd is a metric in
Rp.

Several authors (Barra (2000), Krishnapuram et al.
(1997)) showed that this algorithm createsrelative mem-
berships, interpreted as degrees of sharing the pixels be-
tween all the classes. These degrees are thusnot repre-
sentative of the true degree of belonging. Indeed, FCM
leads to an analytic formulation of

uij =

[
C∑

k=1

(
d(xj , bi)
d(xj , bk)

) 2
m−1

]−1

which depends on the distances ofxj to all classcenters
bk and not only ond(xj , bi). Following Zadeh (1978), we
choose to remedy to this problem, by relaxing the con-
straint (2) using a Lagrangian relaxation. This leads to
thepossibilistic clustering algorithm(PCA).

2.2. The possibilistic clustering algorithm

Krishnapuram et al. (1997) propose to approximate the
minima of the function

J(B,U,X) =
C∑

i=1

N∑
j=1

um
ij d(xj , bi)+

C∑
i=1

ηi

N∑
j=1

(1−uij)m

whereηi is a weighted ponderation term that determines
the distance at which the membership value of a feature in
the clusteri becomes 0.5. Authors proved that this algo-
rithm allows the memberships to be interpreted in terms
of absolute membershipsof features to clusters. In other
words,uij now only depends onxj and classi:

uij =

(
1 +

(
d(xj , bi)

ηi

) 1
m−1

)−1

This is necessary in the case of strong ambiguity or uncer-
tainty, which can happen in complex-shaped images, as
shown by clear examples in Krishnapuram et al. (1997).
Several parameters directly influence the PCA algorithm:

• Initialization: J(B,U,X) is often not convex, and
optimization may then only lead to a local mini-
mum. Initialization of the method is thus a crucial
step, and we choose to perform a few iterations of
the FCM method to find first estimates of class cen-
tersB before running the PCA.

• Ponderation termηi: ηi can be viewed as a penal-
ization coefficient. We propose to computeηi as the
mean intra-class fuzzy distance

ηi =

N∑
j=1

um
ij d(xj , bi)

N∑
j=1

um
ij

• Fuzzifierm: parameterm > 1 controls the degree
of fuzzyness ofU . If m is close to 1,U is almost
‘clear-cut’, that is, eachxj is assigned to one and
only one class. On the contrary,U tends towards the
uniform law on[1 · · ·C] asm tends to infinity. Gen-
erally speaking,m ≥ N/(N − 2) assures the algo-
rithm convergence. In this paper, we choosem = 2.

• Feature vectors: a feature vectorxj ∈ Rp is a vec-
tor representing the image pixelj, 1 ≤ j ≤ N . The
choice of these descriptors is a critical point in the
algorithm, since they must capture all the relevant
information allowing a good clustering. In this pre-
liminary study, the component ofxj is either the
gray-value of the pixelj, the log of its gray level
or the square root of its gray level. In the next Sec-
tion, we show some examples using either one im-
age (p = 1), or several images(p = 3) coming from
different coronal wavelengths.

• Number of classes:C is determined by the type of
structures we await to see. For example, in coronal
images, we expect to distinguish the Active Regions
(AR), their surroundings, the Coronal Holes (CH),
and the Quiet Sun (QS). Consequently, we choose
C = 4 classes. If only three clusters are present
in the feature space, then naturally the possibilistic
clustering algorithm will duplicate one class, due to
the relaxation of constraint (2).



The possibilistic clustering algorithm leads to the compu-
tation of fuzzy maps(ui ·) (see e.g. Figure 3), where the
gray level of a pixelj gives its membership value(uij) to
classi. In this paper, the final segmented image is simply
obtained by assigning each pixel to the class for which it
has the greatest membership. More sophisticated physi-
cal schemes are under study.

3. SEGMENTATION OF EIT IMAGES

The images analyzed here have all been pre-processed us-
ing the standardeit prepprocedure of thesolar software
library. We first consider two 19.5 nm images, one taken
on December 22, 1996, in period of solar minima (I1),
and the second on August 3, 2000 during maximal activ-
ity of the Sun (I2). In order to avoid edge effect at the
limb, we consider only the ‘on-disc’ part of the Sun, that
is, the disk centered on the Sun and having a radius equal
to 0.95R�.

We apply the algorithm with three types of descriptors:
the gray level image, its log, and its square root. Note
that taking the square root is close to doing an Anscombe
transform, and normalizes somewhat the Poisson noise.
Figure 1 shows the segmentations forI1. We see that
gray level image allows to segment active regions (AR)
including their surrounding area, the quiet sun (QS) and
coronal holes (CH), whereas the log of gray level allows
to separate AR from their surrounding area and from QS,
but does not recognize the coronal holes. Finally, the
Anscombe transform of the image allows to separate AR
including their surrounding area, the QS and the CH.

The second imageI2 is represented in Figure 2 together
with its segmentations. There again we see that the gray
level feature is able to separate filaments and CH from
AR and QS, whereas the logarithm of the gray level dis-
tinguish AR from their surroundings. As said above, we
obtain these classes by associating a pixel to the class for
which it has the largest membership value.

Figure 3 shows the four(C = 4) fuzzy maps generated
from the possibilistic clustering algorithm that leads to
the segmentation of Figure 1(d). The brighter the gray
level of a pixel in a class map, the higher its membership
to that class.

We also segmented two 30.4 nm images (calledI3 and
I4), taken on the same day as the 19.5 nm images above.
Figure 4 shows the results, where the plages and some of
the network cell boundaries are extracted from the darker
background. Note that the same images were segmented
in Delouille et al. (2005) with a classical clustering tech-
nique, using as descriptors the fit of a local version of the
wavelet spectrum. The separation obtained in Delouille
et al. (2005) is less precise than the one of PCA.

Finally, in order to demonstrate the generic character of
the method, we process a multiwavelength analysis, using
the imageI1 together with the quasi-simultaneous 17.1

(a) (b)

(c) (d)

Figure 1. (a) EIT imageI1 recorded on December 22,
1996, together with the segmentation results on (b) gray
levels, (c) logs and (d) square roots

(a) (b)

(c) (d)

Figure 2. (a) EIT imageI2 recorded on August 03, 2000,
together with the segmentation results on (b) gray levels,
(c) logs, and (d) square roots



Figure 3. Fuzzy maps obtained when using as descriptor
the square root of the gray level in the imageI1.

30.4 nmI3 image 30.4 nmI4 image

I3 segmented image I4 segmented image

Figure 4. Segmented images computed from the gray level
pixel values of 30.4 nm images (I3 andI4).

Figure 5. Multiwavelength approach: segmented image
using 17.1, 19.5, and 28.4nm images from Dec. 22, 1996.
AR and their surroundings, QS, and CH are well sepa-
rated.

and 28.4 nm EIT images. Each feature vectorxj belongs
thus toR3; its components are the gray level values in
each of the three channels. We tookC = 5 classes. Fig-
ure 5 shows the resulting segmentation. We are now able
to distinguish the AR, the core of the AR, their surround-
ings, the CH and the QS.

4. FUTURE PROSPECTS

Numerous research and applicative extensions are now
expected from this preliminary work:

• feature choice should be optimize: besides the inten-
sity, we could use some preprocessed inputs which
additionally inform on the local texture.

• fuzzy maps should be analyzed and memberships in-
terpreted (in particular near the CH/QS and AR/QS
interfaces)

• quantitative results from the segmentation should be
processed: we aim in particular at studying the influ-
ence of AR, CH and QS on the variability of the to-
tal sun irradiance (Zhukov et al. (2002); Veselovsky
et al. (2001)), by adding the pixel activities in each
class and studying the time evolution of these quan-
tities.
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