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Abstract—An ultrasonic method for simultaneous measurement of two-dimensional distributions of
compositions and flow velocities in a system of two nonmixing fluids is proposed and implemented. The
method is based on tomographic reconstruction of images of scalar and vector objects using a rectangular
system of stationary transceivers. Images of simple objects (a vortex in a homogeneous fluid and a standing
gravitational-capillary wave in a system of two nonmixing fluids) are obtained by this method.
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1. INTRODUCTION

Currently, the technique of tomographic recon-
struction is widely used in medical diagnostics,
nondestructive examination, and introscopy systems
[1]. Despite the fact that the methods of X-ray and
magnetic resonance tomographies have become most
popular, a number of specific features of ultrasonic
analysis allow one to gain additional data on the
properties of objects under study [2].

The measurement parameter in ultrasonic tomog-
raphy is generally taken to be the propagation time
of a probe signal through a medium. For fluids, the
difference in the signal delay times in the forward and
backward directions contains information about the
longitudinal flow velocity, while the sum of delays
characterizes the speed of sound in the propagation
medium. Data on the speed of sound make it possible
to find the concentration distributions in mixed media
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[3] or temperature distributions in various objects [4].
It was shown in [5] that the sensitivity of the difference
in ultrasonic signal propagation times in opposite
directions in a medium to a change in the speed of
sound exceeds many times the sensitivity of the sum
of propagation times to this change. At the same
time, the sensitivities of the difference and sum of
propagation times to a change in the flow velocity are
opposite. This circumstance allows one to separate
algorithms for determining these parameters [6, 7].

In this paper, we report the results of studying
the stationary parametric oscillations in a system of
two nonmixing fluids by ultrasonic tomography. The
generation of oscillations under conditions of Faraday
instability [8] is used, for example, for produce mix-
tures of two liquids in a closed volume [9]. Currently,
these processes are observed mainly by means of
optical detection [9]; as a result, the analysis is gen-
erally restricted to the behavior of interfaces between
optically transparent media. At the same time, data
on the flows formed in these fluids are of undoubted
interest.

The use of time-sensitive ultrasonic methods
makes it possible to record perturbations throughout
the entire volume of a medium both due to its motion
with respect to the receiver and transmitter and due
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to the change in its composition (and, correspond-
ingly, the speed of sound). Thus, the solution of a
tomographic problem allows one to obtain separately
a scalar field of composition distribution and a vector
field of velocities of dissimilar media.

2. BASIC EQUATIONS
OF ULTRASONIC TOMOGRAPHY

The propagation path of an acoustic wave in a
moving dispersed medium (see the schematic dia-
gram in Fig. 1) is determined by two factors: the
refraction of rays in regions with different speeds of
sound c and the path displacement related to the
motion of the medium with a velocity u. In this case,
the group velocity is v = c + u, where c = ck/k is the
speed of sound and k is the wavevector. The compo-
nents of the velocity of the medium are ux = u sinα
and uy =−u cos α, where angle α determines the flow
velocity direction, θ is the angle between wavevector
k and the tangent to the ray path, and ϕ is the angle
of ray rotation. The ultrasonic wave propagation time
from transmitter i to receiver j and in the backward
direction depends on the tangential velocity compo-
nent vl = c cos θ ± u sin(α + ϕ) and is given by the
formula

t±i,j =

Li,j∫

0

dl

c cos θ ± u sin(α + ϕ)
. (1)

The difference in the forward and backward prop-
agation times between transmitters i and j, with
allowance for the small value of flow velocity (u� c),
is

Fig. 1. Ultrasonic tomography of moving objects: (a) an
ultrasonic ray path and (b) a velocity vector diagram.

Δti,j = 2

Li,j∫

0

u

c2
sin(α + ϕ) dl, (2)

where Δti,j = ti,j − tj,i and Li,j is the path length
between the ultrasonic wave transmitter and receiver.
According to Fermat’s principle, the sound ray path
should provide a minimum propagation time between
two points. This minimum is yielded by the maxi-
mum value of the tangential velocity vl; hence, the
minimum value of the normal velocity throughout the
entire wave propagation path should be zero. Thus,
the following equation can be written for the angle of
displacement θ:

c sin θ = −u cos(α + ϕ). (3)

Having taken into account Eq. (3), one can sepa-
rate the flow velocity components that are necessary
to reconstruct the vector velocity field:

Li,j∫

0

ux

c2
dl =

Δti,j
2

cos ϕ +

Li,j∫

0

sin θ sinϕ

c
dl,

(4)
Li,j∫

0

uy

c2
dl = −Δti,j

2
sinϕ +

Li,j∫

0

sin θ cos ϕ

c
dl.

When studying the motion of fluids in closed vol-
umes, where only vortex flows arise (div u = 0), sys-
tem of equations (4) is simplified because the last
terms on the right-hand side of the equations are zero.

The composition (or concentration) distribution in
a system (mixture) of two fluids can be estimated
from the distribution of the speed of sound, the data
on which are present, for example, in the sum of
ultrasonic wave propagation times in the forward and
backward directions. Thus, we obtain a closed sys-
tem of independent integral equations, which allows
one to reconstruct the concentration distribution and
vector field of fluid flow velocities:

Li,j∫

0

ux

c2
dl =

Δti,j
2

cos ϕ,

Li,j∫

0

uy

c2
dl = −Δti,j

2
sinϕ, (5)

Li,j∫

0

dl

c
=

σti,j
2

,

where σti,j = ti,j + tj,i.
The equations in basic system (5) are Radon equa-

tions, the solution algorithm of which is widely used
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in tomographic reconstruction systems. The back
projection method is generally used in conventional
tomography to reconstruct object images. In this
case, the Radon integral is reduced to the convolu-
tion equation, the solution of which is transferred to
Fourier space. A specific feature of this approach
is the determination of an optimal filter, which is
necessary to reconstruct correctly the object image
[10]. For this reason, the method is referred to as
a filtered back projection (FBP) method. However,
the algorithm of search for an optimal filter is fairly
complicated [11]; it has been thoroughly developed for
only tomographic systems with conventional circular
scanning.

Here, the algebraic reconstruction method was
used to reconstruct the vector field of flow velocities.
In this case, the matrix of ray time delays in the
scanning region is determined by the relation

Ti,j =
∑
m,n

Ai,j
m,n Om,n, (6)

where Ti,j is the time-delay matrix, Ai,j
m,n is the ray

tensor, and Om,n is the object matrix; the ranges of
variation in indices are i = [1, I], j = [1, J ], m = [1, M ],
and n = [1, N ]. After reducing the matrices to the
vector form, Eq. (6) can be rewritten as a matrix
equation

Ap,q op = tq, (7)

where p = [1, M×N ] is a pixel number in the image,
q = [1, I×J ] is an acoustical ray number.

To solve matrix equation (7), one must multiply
both parts of (7) by transposed matrix AT . In addi-
tion, it is necessary to take into account that AT A
matrix is degenerated in almost all cases. We sought
for a solution using the Tikhonov regularization [12];
i.e., the solution was sought for in the form

o = (AT A + δE)−1AT t, (8)

where δ is the regularization parameter and E is the
identity matrix.

3. EXPERIMENTAL SETUP
AND MEASUREMENT TECHNIQUE

The experiment geometry was chosen in corre-
spondence with the conditions for laboratory obser-
vations of parametric Faraday instability [9].

Experiments were performed in an optically trans-
parent cell 50×50×25 mm in size (see the photograph
in Fig. 2). Four 16-element ultrasonic longitudi-
nal wave arrays (ACS Ltd) with a central operating
frequency of 4 MHz were inserted in the cell lateral
walls. The array working area was 39×10 mm2; thus,

Fig. 2. Experimental cell: (1−4) working surfaces of
ultrasonic arrays, M is the magnetic mixer platform, and
R is the magnetic mixer rotor.

most of the cell perimeter was occupied by a multiele-
ment transceiving acoustic system. Ultrasound was
excited and received using a 64-channel MultiX 2000
scanning system (M2M Ltd), which made it possible
to implement a tomographic scheme with a stationary
transceiving elements.

The operation algorithm implied alternate pulsed
excitation (pulse width 100 ns) of each out of 64
piezoelectric elements located along the cell perime-
ter and recording of the wave forms received by all
other elements in each excitation cycle. In the ray
approximation, this is equivalent to dealing with a set
of 64 rays propagating through the cell; the system
retains 64×64 = 4096 signals for the complete cycle.
The maximum pulse repetition rate (or transmitter
successive switching rate) depended (as in ultrasonic
scanner) impartially on such factors as the geometric
sizes of the cell and the speed of sound in the fluids
filling it. A subjective limitation was also imposed by
the operating speed of the data transfer channel in the
scanning system. In the experiments described here,
the repetition rate was 800 Hz, which determined
the total circular path time for all transmitters to be
80 ms.

The measured parameter for each received sig-
nal (waveform) was the delay time. To determine
this characteristic, we performed preliminary refer-
ence measurements of all waveforms for a cell filled
with stationary water. Then the change in the delay
time was determined from the point corresponding to
the maximum of correlation function for each wave-
form and the corresponding reference form. The thus
formed delay variation matrix T had a dimension of
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Fig. 3. Tomographic reconstruction of flow velocity in a homogeneous fluid: (a) velocity modulus and (b) velocity vector field.

64×64 and served as an initial data set for recon-
struction. The elements of matrix T corresponding to
transmitter−receiver pairs located in the same array
were forcedly nullified to exclude the values that were
not related to the sound propagation in fluid from the
analysis. Thus, the matrix contained 64×48 nonzero
elements.

4. OBJECTS OF STUDY
AND EXPERIMENTAL RESULTS

The above-described tomographic experiments
were carried out on two fluid objects. The first was
a stationary vortex excited in a homogeneous fluid.
To this end, a cell filled with water was placed on the
platform of magnetic mixer (IKA-Werke). The mixer
rotor, rotating with a speed of 1500 rpm, was located
in the central part of the cell (see Fig. 2). The rotor
was a disk magnet 5 mm in diameter, inserted in a
13-mm-long plastic tube. In view of the difference
in the cell thickness (25 mm) and the width of the
active region of piezoelectric elements (10 mm), the
rotor was located beyond the main propagation region
of the sound fields emitted by arrays. The plas-
tic tube additionally absorbed ultrasound to reduce
backscattering.

The experimental results are shown in Fig. 3. Fig-
ure 3(a) presents a two-dimensional tomographic
reconstruction of the modulus of fluid velocity in gray
scale. Figure 3(b) shows the velocity vector field.
Note that the velocity is normalized both in the lu-
minous images and in the vector diagram. The image
size is 30×30 mm, with allowance for the 10 mm
standoff from the cell edges, where the image has
distortions related to the proximity to the surface of
the antenna arrays. A stable vortex in the form of a
helix with maximum velocity of about 5 cm s−1 was
formed in the cell center. The rotation speed of the

central part of the vortex above the rotor was 2.5 rps,
i.e., lower than the rotor rotation speed by a factor
of 10.

The second object was a combination of two non-
mixing fluids, distilled water and silicone oil with a
viscosity of 1.5 cSt (Dow Corning), placed in the cell
at a temperature of 20◦C. The silicone oil density
and the speed of sound in this oil are, respectively,
ρoil = 847 kg m−3 and coil = 960 m s−1. The compo-
nents filled completely the cell volume in a ratio of
about 1:1. The cell was mounted vertically on a
vibration machine and subjected to sinusoidal os-
cillations in the vertical plane. Vibrations at dou-
bled frequencies of standing capillary-gravity waves
in this system may lead to instability, and at that
in a certain range of excitation vibration amplitudes
a steady-state mode can be obtained. The experi-
ments were performed with the following values of
vibration amplitude and frequency, corresponding to
excitation of steady-state vibrations of the first mode
(along the cell width): 10 mm and 3.5 Hz, respec-
tively. The vibrations set at a frequency of 1.75 Hz
covered a significant part of the cell volume and had
a vertical deviation amplitude �12 mm on its axis.
Since the duration of one measurement cycle (80 ms)
was comparable with 1/8 vibration period, the second
object could be displaced by a significant distance for
the observation time. Therefore, the measurements
were performed in the so-called sampling mode in
this case. Four successive samples of data for each
array were recorded in the same phase from different
stationary vibration cycles. This approach allowed us
to reduce the effective measurement time to 20 ms,
which is comparable with 1/32 period and can be
considered sufficiently short to exclude any significant
changes in the object configuration and velocity for
this time interval.
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Fig. 4. Reconstruction of distributions recorded at the instant of passage through equilibrium state: (a) scalar field of speeds of
sound in the cell, (b) flow velocity vector field, and (c) distribution of flow velocity moduli.

Fig. 5. Reconstruction of distributions recorded at the instant of maximum deviation from equilibrium: (a) scalar field of speeds
of sound in the cell, (b) flow velocity vector field, and (c) distribution of flow velocity moduli.

Thus, the second object can be described by a
vector field of velocity distribution and a scalar field
of speeds of sound (i.e., the distribution of the fluids).
Figure 4 shows reconstructed characteristics of the
measured mode of standing wave in the vibration
phase when the wave passes near the equilibrium
position.

Figure 4(a) shows a scalar field of speeds of sound
in the cell (in shades of black and white), correspond-
ing to the wave location at the instant of detection.
Figure 4(b) presents the velocity vector field, and
Fig. 4(c) shows the distribution of the flow velocity
modulus (in gray scale). These results indicate for-
mation of two circular flows in the cell, the field of
which is characteristic of the distribution of vibra-
tional velocity of a gravitational wave in a fluid.

Figure 5 shows similar distributions obtained near
the maximum-deviation phase. A fluids distribu-

tion image in shades of black and white is shown in
Fig. 5(a). The velocity vector field (Fig. 5(b)) indi-
cates that the distribution was recorded at the instant
when the deviation peak began to fall off and the
backward fluid flow (a bright spot in Fig. 5(c)) started
forming.

The results of this study demonstrated a possibil-
ity of reconstructing simultaneously ultrasonic tomo-
graphic images of the scalar distribution of the com-
position of a two-component system of nonmixing
fluids and the vector field of flows in these fluids. Thus,
ultrasonic tomographic systems can successfully be
used to visualize flows of dissimilar fluids.
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