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1 Project overview
This project is aimed at accelerating MCMC algorithms for fast Bayesian inference in large scale problems. Applications
in astronomy (e.g., hyperspectral imaging) or in remote sensing (e.g., multimodal multi-temporal source separation) could
be considered. The project is part of the ANR Chaire IA SHERLOCK led by Pierre Chainais (co-funded by ISITE, Centrale
Lille Institut and Région Haut-de-France).

Many signal and image processing applications, ranging from astronomy (Abdulaziz et al. 2019; Cai et al. 2018) to
remote sensing (Borsoi et al. 2021; Ghamisi et al. 2019), involve large datasets. In absence of ground truth, fast parameter
inference under controlled uncertainty is critical to guarantee the quality of the resulting predictions.

Asynchronous (parallel or distributed) optimization algorithms have recently regained interest due to their potential of
acceleration, in comparison with their synchronous counterparts (Hannah et al. 2017). However, optimization algorithms
only bring a point estimate, such as the maximum a posteriori (MAP) estimator. Markov-chain Monte Carlo (MCMC)
methods bring a richer information by sampling the posterior distribution of the model. MCMC methods are known
to induce larger computational costs compared to optimization algorithms. Nevertheless, recent works at the interface
between deterministic and stochastic optimization have introduced efficient samplers to address larger datasets (Durmus
et al. 2018; Vono et al. 2020). With the exception of (Simsekli et al. 2018; Terenin et al. 2020), asynchronous MCMC
algorithms largely remain to be investigated.

This PhD project is aimed at studying the potential of asynchronous MCMC algorithms for fast Bayesian inference in
high dimensional problems.
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2 Detailed description
An inverse problem consists in estimating a collection of parameters involved in a physical model from incomplete,
degraded and noisy observations. In many signal and image processing applications, especially in astronomy (Abdulaziz
et al. 2019; Cai et al. 2018) and remote sensing (Ghamisi et al. 2019), no ground truth is available. This is also often the
case for predictors based on machine learning. Therefore, it is critical to provide estimates with quantified uncertainty.

Beyond the point estimate offered by an optimization algorithm, Markov-chain Monte Carlo (MCMC) algorithms give
access to credibility intervals to quantify the estimation uncertainty. This usually comes at a higher computational cost.
However, recent works at the interface between the deterministic and stochastic optimization literature (Durmus et al.
2018; Vono et al. 2020) paved the way to fast distributed MCMC algorithms.

When dealing with big datasets, Bayesian inference algorithms may benefit from divide to conquer strategies. Dis-
tributed inference – involving multiple computing units referred to as workers – comes as a solution to face both data
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storage limitations and reduce the estimation runtime. Adding more workers reduces the costs on a per worker basis, and
allows the algorithm to scale to large datasets.

The workers involved in a distributed inference task need to exchange information to update parameters. A tradeoff be-
tween computation and communication loads needs to be found. To reduce communication costs, the amount of data and
the frequency of communications need to be reduced as much as possible. One solution consists in relaxing synchroniza-
tion requirements between the workers. This allows the performance of the workers to be better exploited, while offering
more robustness against load balancing issues. Asynchronous optimization algorithms have been more specifically an-
alyzed (Cannelli et al. 2019; Mishchenko et al. 2020), calling for specific modifications to ensure their convergence, in
comparison with equivalent synchronous procedures. To the best of our knowledge, only (Simsekli et al. 2018; Terenin
et al. 2020) have analyzed asynchronous MCMC algorithms. This topic largely remains to be investigated.

This PhD project is aimed at studying the potential of asynchronous MCMC algorithms for fast Bayesian inference in
high dimensional problems. Performance assessment could be conducted on inverse problems in astronomy (Abdulaziz
et al. 2019; Cai et al. 2018) or remote sensing (multimodal multi-temporal source separation under spectral variabil-
ity (Borsoi et al. 2021; Ghamisi et al. 2019)). At the interface between deterministic and stochastic optimization, this
project is expected to overcome the limitations of existing methods to deal with otherwise oversized problems. Note that
the proposed methods will also be applied to Bayesian machine learning problems.

The project will directly benefit from interactions with physicists and astrophysicists from the ORION-B consortium
(giant molecular clouds in astrophysics) and the ANR RICOCHET (gravitational waves) projects. Applications to real
data will be possible.

3 Scientific context
The project is part of the ANR Chaire IA SHERLOCK (Fast inference with controlled uncertainty: application to astro-
physical observations) led by Pierre Chainais (co-funded by Agence Nationale de la Recherche (ANR), ISITE, Centrale
Lille Institut and Région Haut-de-France). The succesful candidate will be jointly supervised by Pierre Chainais and
Pierre-Antoine Thouvenin in the CRIStAL lab (UMR 9189), Lille, France.

This work will be conducted in the continuity of an ongoing collaboration initiated by Pierre-Antoine Thouvenin with
Audrey Repetti – research associate at Heriot-Watt University – and Pierre Chainais. There will be opportunities for short
or longer stays at Heriot-Watt University.

The successful candidate will have access to the medium scale computing center from the Universtiy of Lille, and the
national flagship Jean Zay supercomputer.

4 Objectives and planning
The main objectives of the thesis are summarized below, with an indicative planning.

• September 2022 - February 2023

– review of state-of-the-art algorithms from the asynchronous optimization literature

– review of state-of-the-art analysis Langevin MCMC algorithms;

– review on parallel and distributed programming techniques (MPI, OpenMP, GPU programming, hybrid pro-
gramming, parallel data formats such as HDF5);

– review of useful parallel libraries (Python).

• March 2023 - August 2023:

– design and theoretical study of a first distributed asynchronous sampling algorithm;

– application to a representative imaging inverse problem (to be discussed with the PhD advisors);

– core library development (in Python);

– performance assessment on a large computer grid.

• September 2023 - February 2024:

– writing of a first journal paper;

– writing of a first conference paper;
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– (optional) extend the implementation of the algorithm to accommodate multiple parallelization modalities
(both CPU and GPU parallelization);

– (optional) port the functionalities developed thus far to C++.

• March 2024 - August 2024:

– publication of the first version of the library implementing the algorithm from the 1st publication. The code
produced should be sufficiently generic to ensure it can be consistently reused for the following publications;

– investigate an application to a 2nd inverse problem (to be discussed with the advisors);

– code development associated with the 2nd application;

– writing of a second journal paper;

– writing of a second conference paper.

• September 2024 - February 2025:

– finalize the code associated with the 2nd journal article;

– submit 2nd journal article;

– ensure the complete library is fully documented, available online by the acceptance of the 2nd journal article.
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