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Images are challenging
physical measurements,

not pictures!
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The Bayesian framework

We are interested in an unknown image x ∈ Rd .

We observe data y, related to x by a statistical model p(y∣x).

The recovery of x from y is ill-posed or ill-conditioned.

We address this difficulty by using a prior distribution p(x).

The posterior distribution of x given y

p(x∣y) = p(y∣x)p(x)/p(y)

models our knowledge about x after observing y.
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Inverse problems in mathematical imaging

Many imaging inverse problems involve models of the form

π(x∣y) ∝ exp{−g1(x) − g2(x)} (1)

where g1(x) and g2(x) are lower semicontinuous convex functions from
Rd → (−∞,+∞]. Typically g1 is L-Lipschitz differentiable, e.g.,

g1(x) = 1
2σ2 ∥y −Ax∥2

2

for some observation y ∈ Rp and linear operator A ∈ Rp×n, and

g2(x) = α∥Bx∥† + 1S(x)

for some norm ∥ ⋅ ∥†, dictionary B ∈ Rn×n, and convex set S. Often, g2 ∉ C1.
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

π(x∣y),

= argmin
x∈Rd

g1(x) + g2(x),
(2)

which can be computed very efficiently (e.g. within milliseconds), even for
large n, by using optimisation algorithms based on the following mapping:

Definition 1.1 (Proximity mappings (Moreau, 1962))

For λ > 0, the λ-proximity mapping of g convex l.s.c. is defined as

proxλg(x) ≜ argmin
u∈R

g(u) + 1

2λ
∣∣u − x∣∣2.

See Combettes and Pesquet (2011) for list of proximity mappings.
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MAP estimation by convex optimisation

Proximal gradient (forward-backward) algorithm

xm+1 = proxL
−1

g2
{xm + L−1∇g1(xm)},

converges to x̂MAP at rate O(1/m), with poss. acceleration to O(1/m2).

Alternating direction method of multipliers (ADMM) algorithm

xm+1 = proxλg1
{zm − um},

zm+1 = proxλg2
{xm+1 + um},

um+1 = um + xm+1 − zm+1,

also converges to x̂MAP , and does not require g1 to be smooth.
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Illustrative example: image resolution enhancement

Recover x ∈ Rd from low resolution and noisy measurements

y = Hx +w,

where H is a circulant blurring matrix. We use the Bayesian model

π(x∣y) ∝ exp (−∥y −Hx∥2/2σ2 − β∥x∥1). (3)

y x̂MAP Uncertainty estimates

Figure : Resolution enhancement of the Molecules image of size 256×256 pixels.
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Illustrative example: tomographic image reconstruction

Recover x ∈ Rd from partially observed and noisy Fourier measurements

y = ΦFx +w,

where Φ is a mask and F is the 2D Fourier operator. We use the model

π(x∣y) ∝ exp (−∥y −ΦFx∥2/2σ2 − β∥∇dx∥1−2), (4)

where ∇d is the 2d discrete gradient operator and ∥ ⋅ ∥1−2 the `1 − `2 norm.

y x̂MAP Possible solution?

Figure : Tomographic reconstruction of the Shepp-Logan phantom image.

M. Pereyra (UoB) Peyresq 2016 9 / 39



Limitations

Proximal optimisation algorithms deliver accurate approximations of
x̂MAP efficiently. However, x̂MAP provides very little about π(x∣y).

More advanced statistical analyses require other inference tools (e.g.
MCMC algorithms) that are often very computationally expensive.

High-dimensional MCMC methods rely strongly on differential
calculus and may perform badly if π(x∣y) is not sufficiently regular.

This talk describes “proximal” MCMC algorithms (Pereyra, 2015;
Durmus et al., 2016), which exploit convex analysis for simulation.

M. Pereyra (UoB) Peyresq 2016 10 / 39



Modern Bayesian computation

Recent surveys on Bayesian computation...

25th anniversary special issue on Bayesian computation
P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, ”Bayesian computation: a perspective on
the current state, and sampling backwards and forwards”, Statistics and Computing, vol. 25,
no. 4, pp 835-862, Jul. 2015.

Special issue on “Stochastic simulation and optimisation
in signal processing”
M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S.
McLaughlin, “A Survey of Stochastic Simulation and Optimization Methods in Signal Pro-
cessing” IEEE Sel. Topics in Signal Processing, in press.
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples x(1), . . . ,x(M) distributed according to p(x∣y), we
approximate posterior expectations and probabilities

1

M
∑φ(x(m)) → E{φ(x)∣y}, as M →∞

Guarantees from CLTs [e.g., 1√
M
∑φ(x(m)) ∼ N(E{φ(x)∣y},Σ)].

Markov chain Monte Carlo:
Construct a Markov kernel x(m+1)∣x(m) ∼ K(⋅∣x(m)) such that the Markov
chain x(1), . . . ,x(M) has p(x∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose that π ∈ C1. We could simulate from π by mimicking a
Langevin diffusion process that converges to π as t →∞

X ∶ dX (t) = 1

2
∇ logπ (X (t))dt + dW (t), 0 ≤ t ≤ T , X (0) = x0.

Direct simulation from y is generally not possible. Instead, we use a
forward Euler approximation of X (“unadjusted Langevin algorithm”)

ULA ∶ x(m+1) = x(m) + δ∇ logπ(x(m)) +
√

2δz(m), z(m) ∼ N(0, Id)

However, ULA may perform badly if π ∉ C1, or if ∇ logπ is not
Lipchitz continuous (e.g., if π(x) ∝ exp (−γxβ) with β > 2).
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Metropolis-adjusted Langevin algorithm (MALA)

MALA combines ULA with a Metropolis-Hastings step that removes
(asymptotically) the bias due to the discretisation:

1 1) Use ULA to generate candidate

x∗ = x(m) + δ∇ logπ(x(m)) +
√

2δz(m), z(m) ∼ N(0, Id)

2 2) With probability

ρ(m+1) = 1 ∧ π(x∗)
π[x(m)]

pN [x(m)∣x∗ + δ∇ logπ(x∗),2δId]
pN [x∗∣x(m) + δ∇ logπ(x(m)),2δId]

Set x(m+1) = x∗. Otherwise, set x(m+1) = x(m).
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Metropolis-adjusted Langevin algorithm

However, MALAs (and Hamiltonian MCs) often also perform badly if
π ∉ C1, or if ∇ logπ is not Lipchitz continuous !!!

Illustrative example - π(x) ∝ exp{−x4}:

(a) MALA (b) HMC (c) MALTA (d) SMMALA (f) Px-MALA

(a) MALA (b) HMC (c) MALTA (d) SMMALA (f) Px-MALA

Comparison: MALA, Hamiltonian MC (Neal, 2012), ε-truncated gradient MALA (MALTA) (Roberts and Tweedie, 1996),
simplified manifold MALA (SMMALA) (Girolami and Calderhead, 2011) and proximal MALA (Pereyra, 2015).
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Moreau approximations

Idea: Regularise π to enable high-dimensional MCMC sampling.

Definition 2.1

Moreau approximations of π
We define the λ-Moreau approximation of π as the following density

πλ(x) ≜ sup
u∈R

1

κ′
π(u) exp [− 1

2λ
∣∣u − x∣∣2] (5)

with normalizing constant κ′ ∈ R+ and regularisation parameter λ > 0.
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Moreau approximations

Key properties:

1 Differentiability:

πλ ∈ C1 even if π not differentiable, with

∇ logπλ(x) = {proxλg (x) − x}/λ.

∇ logπλ(x) is 1/λ-Lipchitz continuous.

2 Convergence to π:

limλ→0 ∥πλ − π∥TV = 0.
If g(x) = − logπ(x) is L-Lipchitz, then ∥πλ − π∥TV ≤ λL2.
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Moreau approximations

Examples of Moreau approximations:

π(x) ∝ exp (−∣x ∣) π(x) ∝ exp (−x4) π(x) ∝ 1[−0.5,0.5](x)

Figure : True densities (solid blue) and Moreau approximations (dashed red).
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Proximal ULA

Idea: Approximate X with a “regularised” auxiliary Langevin diffusion Xλ
with ergodic measure

π∗λ(x) ∝ π1(x)π2,λ(x)

using a factorisation π(x) = π1(x)π2(x) such that

π1(x) ∝ exp{−g1(x)}

is “easy”, i.e., with g1 ∈ C1, convex, and ∇g1 L1-Lipschitz, and

π2(x) ∝ exp{−g2(x)}

with g2 l.s.c, convex, and with tractable proximity mapping.

We can make Xλ and π∗λ arbitrarily close to X and π.
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Proximal ULA

We use an Euler approximation of Xλ to simulate from π∗λ ≈ π

x(m+1) = x(m) + δ∇ logπλ{x(m)} +
√

2δz(m), z(m) ∼ N(0, Id).

Replacing ∇ logπ2,λ(x) = {proxλg2
(x) − x}/λ leads to the (Moreau-Yoshida

regularised) proximal ULA

MYULA ∶ x(m+1) = (1− δ
λ)x(m)−δ∇g1{x(m)}+ δ

λ proxλg2
{x(m)}+

√
2δz(m).

Stability condition: step-size δ ≤ δmax
λ = (L1 + 1/λ)−1.

Rule of thumb: set λ = L−1
1 and δ ∈ [L−1

1 /10,L−1
1 /2].
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Some fundamental questions

Starting from some arbitrary initial condition x0 ∈ Rd , we perform M ∈ N
iterations of MYULA targeting π∗λ ≈ π...

Some fundamental questions:

1 Does MYULA converge to a stationary distribution as M →∞?

2 Is this stationary distribution close to π in some sense?

3 Are there any accuracy guarantees for finite M?

4 How do these guarantees scale with M and with the dimension d?
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Asymptotic results

1 Does MYULA converge to a stationary distribution as M →∞?

2 Is this stationary distribution close to π in some sense?

Assumption 2.1

Let Γ0(Rd) be the class of lower semi-continous convex functions from
Rd → (−∞,+∞]. Assume that π(x) ∝ exp{−g1(x) − g2(x)}, with
g1,g2 ∈ Γ0(Rd), and ∇g1 Lipschitz continuous with constant L1.

Theorem 2.1 (Durmus et al. (2016))

Suppose that Assumption 2.1 holds. Then, ∀x0 ∈ Rd and ∀δ < δmax
λ ,

MYULA converges geometrically fast to an invariant measure π̃δλ satisfying

∥π̃δλ − π∗λ∥TV = O(δ1/2),

as M →∞.
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Non-asymptotic results

3 Are there any accuracy guarantees for finite M?

Theorem 2.2 (Durmus et al. (2016))

Suppose that Assumption 1 holds. Then, there exist δε ∈ (0, δmax
λ ] and

Mε ∈ N such that ∀δ < δε and ∀M ≥ Mε

∥δx0QM
δ − π∗δ/2∥TV < ε,

where QM
δ is the kernel associated with M MYULA iterations with step δ.

If in addition g2 is Lipchitz continuous with constant L2, then

∥δx0QM
δ − π∥TV < ε + δ

2 L2
2.
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Scaling with dimension

4 How do these bounds scale with M and with the dimension d?

Dependence of δε and Mε on dimension d and ε (Durmus et al.,
2016):

n ε

δ O(d−5) O(ε2/ log(ε−1))
M O(d9) O(ε−2 log2(ε−1))

general bounds for Assumption 2.1

n ε

δ O(d−1) O(ε2/ log(ε−1))
M O(d) O(ε−2 log2(ε−1))
bounds if the drift is strongly convex outside some ball

The bound ∥π∗λ − π∥TV ≤ δ
2 L2

2 is typically O(d).

Conclusion: MYULA delivers reliable and computationally efficient
approximations, with good control of accuracy vs. computing-time.
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Sparse image deblurring with an `1 prior

Recover a sparse high-resolution image x ∈ Rn from a blurred and noisy
observation

y = Hx +w,

where H is a linear blur operator and w ∼ N(0, σ2Id).

We use the Bayesian model

p(x∣y) ∝ exp (−∥y −Hx∥2/2σ2 − β∥x∥1). (6)

with β = 0.01.
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Microscopy experiment

MAP estimation - live cell microscopy dataset (Zhu et al., 2012):

Microscopic image y x̂MAP (log-scale)

Computing x̂MAP by convex optimisation Afonso et al. (2011) required 2.3
seconds.

Consider the 3-molecule structure in the highlighted region,
how confident are we about this structure (its presence, position, etc.)?
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Bayesian analysis - Posterior credible regions

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert, 2001)

C∗
α = {x ∶ g1(x) + g2(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α

p(x∣y)dx = 1 − α holds.
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Bayesian analysis - Knockout hypothesis testing

“Knockout” test: double negation approach - assume that the structure
is NOT present in the image and seek to REJECT the hypothesis.

Test procedure:

1 Generate a surrogate test image x† by modifying x̂MAP to remove the
structure of interest.

2 If x† ∉ C̃α the model rejects x† with probability (1 − α), suggesting
that the structure is present in the true image with high probability.

3 Otherwise, if x† ∈ C̃α the posterior uncertainty about the structure is
too high to draw conclusions → increase measurements / reduce noise.

M. Pereyra (UoB) Peyresq 2016 30 / 39



Bayesian computation

Estimation of C∗
α :

We use MYULA to generate n = 105 samples {XM
k }nk=1 and compute

the HPD threshold γα by solving the quantile estimation problem

1

n

n

∑
k=1

1(−∞,γα] [g1(XM
k ) + g2(XM

k )] = 1 − α.

We implement MYULA with:

g1(x) = ∥y −Hx∥2/2σ2

g2(x) = β∥x∥1.
proxλg2

(x) is the soft-thresholding operator with parameter βλ.

Algorithm parameters λ = L−1
f = 1.2 and δ = δmax

λ = 0.6.

Computing time 4 minutes.
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Microscopy experiment - Knockout test

Knockout test:

x̂MAP (log-scale) Test image x† (log-scale)

1 Score g1(x†) + g2(x†) = 1.19 × 105.

2 The 99% threshold γ0.01 = 9.69 × 104.

3 Therefore x† ∉ C̃α, rejecting the knockout hypothesis and providing
evidence in favour of the structure considered.
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Microscopy experiment - uncertainty quantification

Position uncertainty quantification
Find maximum molecule displacement within C̃α:

Mocule position uncertainty (±5 × ±8 pixels)

Note: Uncertainty analysis (±78nm ×±125nm) in close agreement with the
experimental results (average precision 80nm) of Zhu et al. (2012).
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Microscopy experiment - Approximation error analysis

To assess the approximation error we benchmark estimations against
proximal MALA (Px-MALA), which targets p(x∣y) exactly (Pereyra, 2015).
We use n = 107 iterations of Px-MALA (computing time 24 hours).

(a) (b)

Figure : Microscopy experiment: (a) HDP region thresholds ηα for MYULA and
Px-MALA, (b) relative approximation error of MYULA.
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Conclusion

The challenges facing modern image processing require a paradigm
shift, and a new wave of analysis and computation methodologies.

Great potential for synergy between Bayesian and variational
approaches at algorithmic, methodological, and theoretical levels.

MYULA delivers reliable and computationally efficient approximate
inferences, with good control of accuracy vs. computing-time.
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Thank you!

Fancy a Postdoc?
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