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Latent Variable Models

Assume

Xt
i.i.d.∼ µθ (·) , Yt | (Xt = x) ∼ gθ ( ·| x) for t = 1, ...,T

where (Xt )t≥1 are latent variables and (Yt )t≥1 correspond to
observations.

The likelihood of Y1:T = y1:T for parameter θ ∈ Rd is

pθ (y1:T ) =
T

∏
t=1
pθ (yt ) , where pθ (yt ) =

∫
µθ (xt ) gθ (yt | xt )dxt .

In many scenarios, pθ (y1:T ) cannot be evaluated exactly.
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Example: Multivariate Probit model

Multivariate latent Gaussian variables

Xt = Ztβ+ εt , εt
i.i.d.∼ N (0,R) .

Multivariate binary observations

Yti = I (Xti ≥ 0) , i = 1, ..., n

Likelihood of (β,R) is the product of T integrals of n-dimensional
truncated multivariate normals.
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State-Space Models

Assume {Xt}t≥1 is a latent Markov process, i.e. X1 ∼ µθ(·) and

Xt+1| (Xt = x) ∼ fθ ( ·| x) , Yt | (Xt = x) ∼ gθ ( ·| x) .

The likelihood of observations Y1:T = y1:T is

pθ(y1:T ) =
∫
pθ(x1:T , y1:T )dx1:T

where

pθ(x1:T , y1:T ) = µθ(x1)gθ (y1| x1)
T

∏
t=2
fθ (xt | xt−1) gθ (yt | xt ) .

State-space models are ubiquitous in time series analysis but inference
is diffi cult as pθ(y1:T ) is intractable for non-linear/non-Gaussian
models.
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Stochastic kinetic model - Lotka-Volterra

Two species X 1s (prey) and X
2
s (predator)

Pr
(
X 1s+ds=x

1
s+1,X

2
s+ds=x

2
s

∣∣ x1s , x2s ) = α x1s ds + o (ds) ,
Pr
(
X 1s+ds=x

1
s−1,X 2s+ds=x2s+1

∣∣ x1s , x2s ) = β x1s x
2
s ds + o (ds) ,

Pr
(
X 1s+ds=x

1
t ,X

2
s+ds=x

2
s−1

∣∣ x1s , x2s ) = γ x2s ds + o (ds) ,

observed at discrete times

Yt = X 1∆t +Wt with Wt
i.i.d.∼ N

(
0, σ2

)
.

Kinetic rate constants θ = (α, β,γ).
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Other Applications

State-space models are ubiquitous: 16,700 hits on Google Scholar
since January 2015.

Econometrics: stochastic volatility models.
Epidemiology: disease dynamic models.
Ecology: population dynamics.
Environmentrics: phytoplankton-zooplankton model, paleoclimate
reconstruction.

Macroeconomics: dynamic generalized stochastic equilibrium.
Signal Processing: target tracking.
Systems biology: stochastic kinetic models.
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Bayesian Inference for Latent Variable Models

Prior distribution of density p (θ) .

Likelihood function pθ (y1:T ).

Bayesian inference relies on the posterior

π (θ) = p ( θ| y1:T ) =
pθ (y1:T ) p (θ)∫

Θ pθ′ (y1:T ) p
(
θ′
)

dθ′
.

For non-trivial models, inference relies typically on MCMC.
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Standard MCMC Approaches

Standard MCMC schemes target p ( θ, x1:T | y1:T ) where

p ( θ, x1:T | y1:T ) ∝ p (θ) pθ (x1:T , y1:T )

using Gibbs type strategy; i.e. sample alternately X1:T ∼ pθ ( ·| y1:T )
and θ ∼ p ( ·| y1:T ,X1:T ) .

Problem 1: it can be diffi cult to sample pθ (x1:T | y1:T ); e.g.
state-space models.

Problem 2: Even when it is implementable, Gibbs can converge very
slowly.

Pseudo-marginal methods mimick an algorithm targetting directly
p ( θ| y1:T ) instead of p ( θ, x1:T | y1:T ).
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Ideal Marginal Metropolis-Hastings algorithm

Metropolis—Hastings (MH) algorithm simulates an ergodic Markov
chain {ϑi}i≥1 of limiting distribution π (θ) .

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1).
With probability

min
{
1,

π (ϑ)

π (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}
= min

{
1,

pϑ (y1:T ) p (ϑ)
pϑi−1 (y1:T ) p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}
,

set ϑi = ϑ, otherwise set ϑi = ϑi−1.

Problem: MH cannot be implemented if pϑ (y1:T ) cannot be
evaluated.
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Pseudo-Marginal Metropolis—Hastings algorithm

“Idea”: Replace pϑ (y1:T ) by an estimate p̂ϑ (y1:T ) in MH.

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1) .
Compute an estimate p̂ϑ (y1:T ) of pϑ (y1:T ) .

With probability

min{1, pϑ (y1:T )

pϑi−1 (y1:T )

p (ϑ)
p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)︸ ︷︷ ︸

exact MH ratio

× p̂ϑ (y1:T ) /pϑ (y1:T )

p̂ϑi−1 (y1:T ) /pϑi−1 (y1:T )︸ ︷︷ ︸
noise

}

= min{1, p̂ϑ (y1:T ) p (ϑ)
p̂ϑi−1 (y1:T ) p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}

set ϑi = ϑ, p̂ϑi (y1:T ) = p̂ϑ (y1:T ) otherwise set ϑi = ϑi−1,
p̂ϑi (y1:T ) = p̂ϑi−1 (y1:T ) .
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pϑi−1 (y1:T )

p (ϑ)
p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)︸ ︷︷ ︸

exact MH ratio

× p̂ϑ (y1:T ) /pϑ (y1:T )

p̂ϑi−1 (y1:T ) /pϑi−1 (y1:T )︸ ︷︷ ︸
noise

}
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Key Result

Proposition (Lin, Liu & Sloan, 2000; Andrieu & Roberts, 2009): If
p̂ϑ (y1:T ) is a non-negative unbiased estimator of pθ (y1:T ) then the
pseudo-marginal MH kernel admits π (θ) as invariant density.

Let U be the r.v. such that p̂θ (y1:T ) = p̂θ (y1:T ;U) and
E [p̂θ (y1:T ;U)] = pθ (y1:T ) when U ∼ m (·) .
Consider the auxiliary target density on Θ×U

π(θ, u) = π (θ)
p̂θ (y1:T ; u)
pθ (y1:T )

m (u)︸ ︷︷ ︸∫
(.)du=1

Pseudo-marginal MH is a standard MH with target π(θ, u) and
proposal q (ϑ| θ)m(v) as

π(ϑ, v)
π(θ, u)

q ( θ| ϑ)m(u)
q (ϑ| θ)m(v) =

p̂ϑ (y1:T ; v)
p̂θ (y1:T ; u)

p (ϑ)
p (θ)

q ( θ| ϑ)
q (ϑ| θ) .
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Importance Sampling Estimator

For latent variable models, one has

pθ (yt ) =
∫

µθ (xt ) gθ (yt | xt )dxt .

An non-negative unbiased estimator is given by

p̂θ(y1:T ) =
T

∏
t=1
p̂θ(yt ) =

T

∏
t=1

{
1
N

N

∑
k=1

gθ

(
yt |X kt

)}
, X kt

i.i.d.∼ µθ,

i.e.

m (u) =
T

∏
t=1

N

∏
k=1

µθ

(
xkt
)
.

Computational complexity is O(NT ).
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Particle Filter Estimator

For state-space models, previous approach provides an estimator
whose relative variance scales typically exponentially with T .

An alternative is to use particle filter where

p̂θ (y1:T ) = p̂θ(y1)
T

∏
t=2
p̂θ (yt | y1:t−1)

=
T

∏
t=1

{
1
N

N

∑
k=1

gθ

(
yt |X kn

)}
where

m (u) =
N

∏
k=1

µθ

(
xk1
) T

∏
t=2
{
N

∏
k=1

w
akt−1
t f

(
xkt
∣∣∣ xakt−1t−1

)
}

with akt−1 ∈ {1, ...,N} , w
j
t ∝ gθ

(
yt |X jt

)
, ∑j w

j
t = 1.

Computational complexity is O (NT ).
The estimator p̂θ(y1:T ) of pθ (y1:T ) is unbiased and its relative
variance is bounded uniformly over T if N ∝ T (Cerou, Del Moral &
Guyader, 2011).
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Pseudo-Marginal Metropolis—Hastings algorithm

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1) .
Use particle filter to compute an estimate p̂ϑ (y1:T ) of pϑ (y1:T ) .

With probability

min{1, p̂ϑ (y1:T ) p (ϑ)
p̂ϑi−1 (y1:T ) p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}

set ϑi = ϑ, p̂ϑi (y1:T ) = p̂ϑ (y1:T ) otherwise set ϑi = ϑi−1,
p̂ϑi (y1:T ) = p̂ϑi−1 (y1:T ) .
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Empirical performance: Stochastic kinetic model

Two species X 1s (prey) and X
2
s (predator)

Pr
(
X 1s+ds=x

1
s+1,X

2
s+ds=x

2
s

∣∣ x1s , x2s ) = α x1s ds + o (ds) ,
Pr
(
X 1s+ds=x

1
s−1,X 2s+ds=x2s+1

∣∣ x1s , x2s ) = β x1s x
2
s ds + o (ds) ,

Pr
(
X 1s+ds=x

1
t ,X

2
s+ds=x

2
s−1

∣∣ x1s , x2s ) = γ x2s ds + o (ds) ,

observed at discrete times

Yt = X 1∆t +Wt with Wt
i.i.d.∼ N

(
0, σ2

)
.

We are interested in the kinetic rate constants θ = (α, β,γ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

Pseudo-marginal MH with RW proposal, likelihood is approximated
using particle filter.
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Empirical performance: Stochastic kinetic model
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Empirical performance: Stochastic kinetic model

  0
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Autocorrelation of α (left) and β (right) for the PM sampler for various N.
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Empirical performance: Stochastic volatility model

Huang & Tauchen, J. Financial Econometrics (2005):

dv1 (s) = −k1 {v1 (s)− µ1}ds + σ1dW1 (s) ,

dv2 (s) = −k2v2 (s)ds + {1+ β12v2 (s)}dW2 (s) ,

d logP (s) = µyds + s-exp [{v1 (s) + β2v2 (s)} /2]dB (s) ,

with φ1 =corr{B (s) ,W1 (s)} and φ2 =corr{B (s) ,W2 (s)}.

Euler discretization of the volatilities v1 (s) and v2 (s) provides closed
form expression for Yt = logP (∆t)− logP (∆ (t − 1)) .
Daily returns y = (y1, ..., yT ) of the S&P 500 index.

Bayesian Inference on θ =
(
k1, µ1, σ1, k2, β12, β2, µy , φ1, φ2

)
.

Performance of the pseudo-marginal for RW proposal w.r.t σ,
standard deviation of log p̂θ (y) at posterior mean θ.
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Integrated Autocorrelation Time of Pseudo-Marginal MH
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Figure: Average over the 9 parameter components of the log-integrated
autocorrelation time of pseudo-marginal chain as a function of σ for T = 300.
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How precise should the log-likelihood estimator be?

Aim: Minimize the computational time

CTQh = IF
Q
h /σ2

as σ2 ∝ 1/N and computational efforts proportional to N, where

IFQh = Integrated Autocorrelation Time of PM average

Call the IACT the ineffi ciency

IFQh = 1+ 2
∞

∑
τ=1

corrπ,Q {h (θ0) , h (θτ)}

where Q is the pseudo-marginal kernel given for (θ, z) 6= (ϑ,w) by

Q {(θ, z) , (dϑ,dw)} = q(ϑ|θ)gϑ(w)min
{
1,

π (ϑ)

π (θ)
exp (w − z)

}
dϑdw ,

where

z = log{p̂θ(y1:T )/pθ(y1:T )},
w = log{p̂ϑ(y1:T )/pϑ(y1:T )}.
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Computational time for the SV model
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Figure: Computational time as a function of σ
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Analysis in the large data regime

Standard asymptotic study of MCMC relies on d → ∞ and
independence assumption on the target, interested here in fixed d ,
large T .

Assumption 1 - Asymptotic Normality: We have∫ ∣∣∣p ( θ|Y1:T )− φ(θ; θ̂
T
,Σ/T )

∣∣∣dθ
P→ 0,

where θ̂
T P→ θ and Σ is a p.d. matrix.

Assumption 2 - CLT: For any θ in a neighbourhood of θ,

log
p̂θ(Y1:T )

pθ(Y1:T )

∣∣∣∣YT ⇒ N (−σ2 (θ) /2, σ2 (θ)
)

in probability and σ2 (·) continuous at θ.
Assumption 3 - Proposal: ϑ = θ + ε/

√
T where ε ∼ υ (·) with

υ (ε) = υ (−ε) .
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Analysis in the large data regime

Assumption 1 holds if for example Bernstein-von Mises holds (in
correctly specified/misspecified scenarios).

Assumption 2 has been shown to hold under regularity assumptions if
N ∝ T (Berard et al, 2014, Deligiannidis et al, 2015).

Assumption 3 can be easily enforced.
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Weak convergence

Let {ϑTi ,ZTi := log p̂ϑTi
(Y1:T )/pϑTi

(Y1:T )}i≥0 the stationary PM
Markov chain of invariant density p ( θ|Y1:T ) exp (z) gTθ (z).

Proposition (Schmon et al, 2016): The F.D.D. of the rescaled
sequence {ϑ̃Ti =

√
T (ϑTi − θ̂T ),ZTi }i≥0 converge weakly as T → ∞

to those of a stationary Markov chain of invariant density
φ
(

θ̃; 0,Σ
)

φ
(
z ;−σ2

(
θ
)

/2, σ2
(
θ
))
and kernel given by

Q̃{(θ̃, z), (dϑ̃,dw)} = υ(ϑ̃− θ̃)φ
(
w ;−σ2

(
θ
)

/2, σ2
(
θ
))

×min
{
1,

φ(ϑ̃; 0,Σ)
φ(θ̃; 0,Σ)

exp (w − z)
}

dϑ̃dw

for (θ̃, z) 6= (ϑ̃,w).
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Weak convergence

These results suggests that a simplified analysis of the PM chain can
be performed by looking at

Q̂{(θ, z) , (dϑ,dw)} = q (ϑ| θ) φ
(
w ;−σ2/2, σ2

)
×min

{
1,

π (ϑ)

π (θ)
exp (w − z)

}
dϑdw ,

where σ2 = σ2
(
θ
)
.

It would be more satisfactory to show that∣∣∣IFQh − IF Q̂h ∣∣∣→ 0

as T → ∞. The analysis relies on (Andrieu & Vihola, 2015) and is
much more involved.
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Empirical vs Assumed Distributions for SV model
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Figure: Empirical distributions (dashed) vs assumed Gaussians (solid) of Z at θ
(left) and marginalized over samples from π (θ) (center) and

∫
π (dϑ) q ( θ| ϑ)

(right) for T = 40, T = 300 and T = 2700.
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Available Results

Aim: Minimize the computational cost

CT Q̂h (σ) = IF
Q̂
h (σ) /σ2.

Special cases:

1 When q(ϑ|θ) = p (ϑ| y), σopt = 0.92 (Pitt et al., 2012).

2 When π (θ) =
d

∏
i=1
f (θi ) and q(ϑ|θ) is an isotropic Gaussian random

walk then, as d → ∞, diffusion limit suggests σopt = 1.81 (Sherlock
et al., 2015).
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Sketch of the Analysis

For general proposals and targets, direct minimization of
CT Q̂h (σ) = IF

Q̂
h (σ) /σ2 impossible so minimize an upper bound over

it.

Theoretical study relies on π−invariant kernel Q∗ given for
(θ, z) 6= (ϑ,w) by

q(ϑ|θ)φ
(
w ;−σ2/2, σ2

)
min

{
1,

π (ϑ)

π (θ)

}
min {1, exp (w − z)}dϑdw ,

instead of

q(ϑ|θ)φ
(
w ;−σ2/2, σ2

)
min

{
1,

π (ϑ)

π (θ)
exp (w − z)

}
dϑdw .

Peskun’s theorem (1973) guarantees that IF Q̂h (σ) ≤ IF
Q ∗
h (σ) so that

CT Q̂h (σ) ≤ CT
Q ∗
h (σ).
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Main Theoretical Result

Proposition: If IFQ
∗

h (σ) < ∞ then IF Q̂h (σ) ≤ IF
Q ∗
h (σ) and

IFQ
∗

h (σ) = 2

{
1+ IF EXh

}
1+ IF Q̃

EX

h/$EX

{πσ
Z (z) (1/$σ

Z)− 1/πσ
Z (z) ($

σ
Z)}

×
∞

∑
n=0

φn(h/$EX, Q̃
EX)φn(1/$Z, Q̃

Z
σ )

+
1+ IF EXh
πσ
Z($

σ
Z)
− 1,

where φn (ϕ,P) denotes the autocorrelation at lag n under a Markov
kernel P.

Q̃EX and Q̃Zσ correspond to the jump kernels associated to Q
EX and

QZσ , $EX (θ) and $σ
Z (z) are acceptance proba of Q

EX and QZσ .
This identity allows us to “decouple” the influence of the parameter
and noise components on IFQ

∗

h (σ).
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Simpler Bounds on the Relative Ineffi ciency

If IF Q̃
EX

h/$EX
≥ 1, e.g. Q̃EX is a positive kernel, then

IF Q̂h (σ)

IF EXh
≤ IFQ

∗

h (σ)

IF EXh
≤ 1
2
(1+ 1/IF EXh )πσ

Z(1/$σ
Z)−

1
IF EXh

and the bound is tight as IF EXh → 1 or σ→ 0.

As IF EXJ ,h/$EX
→ ∞,

IFQ
∗

h (σ)

IF EXh
→ 1

πσ
Z($

σ
Z)
.

Results used to minimize w.r.t σ upper bounds on
CT Q̂h (σ) = IF

Q̂
h (σ) /σ2.
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Bounds on Relative Computational Time

0 .4 0 .6 0 .8 1 .0 1 .2 1 .4 1 .6 1 .8

5

1 0

1 5

2 0

2 5

3 0

0 .4 0 .6 0 .8 1 .0 1 .2 1 .4 1 .6 1 .8

5

1 0

1 5

2 0

2 5

3 0

Left: upper bound on CTQ
∗

h (σ) /IF EXh as a function of σ for IF EXh = 1
(square), 4 (crosses), 20 (circles), 80 (triangles). Right: upper bounds on
CTQ

∗

h (σ) /IF EXh as a function of σ for IF EXJ ,h//$EX
= 1 for

IF EXJ ,h//$EX
= 1, 4, 20, 80 and lower bound (solid line).
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Practical Guidelines

For good proposals, select σ ≈ 1.0 whereas for poor proposals, select
σ ≈ 1.7.

When you have no clue about the proposal effi ciency,

1 If σopt = 1.0 and you pick σ = 1.7, computing time increases by
≈150%.

2 If σopt = 1.7 and you pick σ = 1.0, computing time increases by
≈50%.

3 If σopt = 1.0 or σopt = 1.7 and you pick σ = 1.2− 1.3, computing
time increases by ≈15%.
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Example: Noisy Autoregressive Example

Consider

Xt = µ(1− φ) + φXt + Vt , Vt
i.i.d.∼ N

(
0, σ2η

)
,

Yt = Xt +Wt , Wt
i.i.d.∼ N

(
0, σ2ε

)
,

where θ =
(

φ, µ, σ2η

)
.

Likelihood can be computed exactly using Kalman.

Autoregressive Metropolis proposal of coeffi cient ρ for ϑ based on
multivariate t-distribution.

N is selected so as to obtain σ
(
θ
)
≈constant where θ posterior mean.
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Relative Ineffi ciency and Computing Time
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Figure: From left to right: RCT Q
h vs N, RCT

Q
h vs σ(θ), RIF Qh against N and

RIF Qh against σ(θ) for various values of ρ and different parameters.
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Discussion

Simplified quantitative analysis of the pseudo-marginal MH algorithm,
useful in large data regime.

Optimal σ depends on effi ciency of the ideal MH algorithm but
σ ≈ 1.2 is a sweet spot.
Pseudo-marginal MH scales in O

(
T 2
)
as we require N ∝ T , while

simulated likelihood scales in O
(
T 3/2), i.e. N ∝

√
T .

However, pseudo-marginal MH much more generally applicable than
simulated likelihood.
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The Correlated Pseudo-Marginal Algorithm

Reparameterize the likelihood estimator p̂θ (y1:T ) as a function of
normal variates U ∼ N (0, I )

p̂θ (y1:T ) = p̂θ (y1:T ;U)

Correlate estimators of pθ (y1:T ) and pϑ (y1:T ) by setting

p̂ϑ (y1:T ) = p̂ϑ (y1:T ;V )

where
V = ρU +

√
1− ρ2ε, ε ∼ N (0, I )

for ρ ∈ (−1, 1) .
In practice, ρ will be select close to 1.
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Correlated Pseudo-Marginal Metropolis—Hastings algorithm

At iteration i

Sample ϑ ∼ q ( ·| ϑi−1) and V = ρUi−1 +
√
1− ρ2ε, ε ∼ N (0, I ) .

Compute the estimate p̂ϑ (y1:T ;V ) of pϑ (y1:T ) .

With probability

min{1, p̂ϑ (y1:T ;V )
p̂ϑi−1 (y1:T ;Ui−1)

p (ϑ)
p (ϑi−1)

q (ϑi−1| ϑ)
q (ϑ| ϑi−1)

}

set ϑi = ϑ, Ui = V , otherwise set ϑi = ϑi−1, Ui = Ui−1.
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Analysis in the large data regime - i.i.d. case

Proposition. Let N = N(T )→ ∞ as T → ∞ with N = o(T ). When

U ∼ π(·|θ) and V = ρTU +
√
1− ρ2T ε with ρT = exp

(
−ψN

T

)
then as

T → ∞

log{ p̂θ+ξ/
√
T (y1:T ;V )

p̂θ(y1:T ;U )
/
pθ+ξ/

√
T (y1:T )

pθ(y1:T )
}
∣∣∣∣YT ,UT ⇒ N (− κ2(θ)

2 , κ2 (θ)).

This CLT is conditional on the observation sequence and the current
auxiliary variables.

Asymptotically the distribution of the log-ratio decouples from the
current location of the Markov chain.

The asymptotic variance is O (1) even for N ∼ log(T ).
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Analysis in the large data regime

Assumption 1 - Asymptotic Normality: We have∫ ∣∣∣p ( θ|Y1:T )− φ(θ; θ̂
T
,Σ/T )

∣∣∣dθ
P→ 0,

where θ̂
T P→ θ and Σ is a p.d. matrix.

Assumption 2 - Proposal: ϑ = θ + ξ/
√
T where ε ∼ υ (·) with

υ (ξ) = υ (−ξ) .

Assumption 3 - For any θ in a neighbourhood of θ, the conditional
CLT holds and κ2 (·) is continuous at θ.
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Weak convergence

Let {ϑTi }i≥0 the stationary non-Markovian sequence of the correlated
PM of invariant density p ( θ|Y1:T ).

Proposition (Deligiannidis et al., 2016): The F.D.D. of the rescaled
sequence {ϑ̃Ti =

√
T (ϑTi − θ̂T )}i≥0 converge weakly as T → ∞ to

those of a stationary Markov chain of invariant density φ
(

θ̃; 0,Σ
)

and kernel given for θ̃ 6= ϑ̃ by

Q̃(θ̃,dϑ̃) = υ(ϑ̃− θ̃)ER

[
min

{
1,

φ(ϑ̃; 0,Σ)
φ(θ̃; 0,Σ)

R

}]
dϑ̃

where R ∼ N (−κ2
(
θ
)

/2, κ2
(
θ
)
).

These results suggests that a simplified analysis of the CPM chain
can be performed by looking at

Q̂(θ,dϑ) = q (ϑ| θ)ER

[
min

{
1,

π (ϑ)

π (θ)
R
}]

dϑ

where R ∼ N (−κ2/2, κ2).
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Breakdown

An analysis based on this limiting kernel shows that one should select
κ2 ≈ 4.5 to optimize the performance of the algorithm at fixed
computational complexity.

Too good to be true? Can I really pick N arbitrarily?

Weak convergence does NOT show that
∣∣∣IFQh − IF Q̂h ∣∣∣→ 0.

Informally, we have for h (θ) = θ

Cov (θ0, θτ) ≈ E (C ( θ0, θτ|U0,Uτ))︸ ︷︷ ︸
fast

+C (E ( θ0|U0) ,E ( θτ|Uτ))︸ ︷︷ ︸
slow

where E ( θ0|U0) ≈ θ̂
T
+ Σ/T ∇θ log p̂θ (y1:T ;U) /pθ (y1:T )|θ̂T . and

IFQh → ∞ if N/
√
T → 0.

To ensure IFQh , we need at least N ∝
√
T and we conjecture it is

suffi cient.
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Example: Gaussian Latent Variable Model

Consider the toy model

Xt
i.i.d.∼ N (θ, 1), Yt |Xt ∼ N (Xt , σ2).

The likelihood can be computed exactly, allowing to implement the
“exact”MH algorithm.

The likelihood estimator is based on importance sampling.

Integrated Autocorrelation Time is referred to as the Ineffi ciency IF .
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Example: Gaussian Latent Variable Model

MH (T = 8192) IF(θ)
15.6

PM (ρ = 0.0)
N RIF(θ) RCT(θ)
5000 2.2 11210
CPM (ρ = 0.9963)
N κ RIF(θ) RCT(θ)
9 3.1 14.0 126.2
12 2.7 8.3 99.7
20 2.2 4.7 93.3
25 2.0 2.8 69.3
35 1.7 1.7 61.1
56 1.3 1.6 87.0
80 1.1 1.1 89.0
120 0.9 0.9 113.5

Here RIF = IF/IFMH and RCT = N × RIF.
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Discussion

In i.i.d. case, very substantial improvement over the PM algorithm
can be achieved by introducing a correlation scheme.

Analysis suggests that complexity is O
(
T
√
T
)
vs O

(
T 2
)
.

In state-space models, implementation relies on non-standard particle
filter scheme (Hilbert sorting): our analysis does not hold
experimentally for state dimension > 1 and theoretically and but still
substantial gains.

Novel pseudo-marginal scheme using Conditional Sequential Monte
Carlo (Andrieu, A.D., Yildirim, 2016) appears to suggest O (T ) is
feasible.
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Experimental results using conditional SMC

Novel c-SMC PM Standard PM
σ2v σ2w σ2v σ2w

T = 1000 17.7 23.5 71.2 59.2
T = 2000 17.5 23.7 759.0 757.9
T = 5000 17.6 23.7 5808.6 5663.5
T = 10000 17.6 23.6 7368.1 7176.9

Estimated IACT on a nonlinear state-space model for N = 200 for novel
c-SMC PM algorithm and N = 2000 for standard PM algorithm
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