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Abstract—For large scale inverse problems, inference can
be tackled with distributed algorithms, dividing the task over
multiple computing nodes or cores referred to as workers. Since
random sampling methods yield not only estimates but also
credibility intervals, we leverage data augmentations and MCMC
algorithms to design a distributed sampler. In contrast with usual
approaches relying on a client-server architecture, we propose a
flexible distributed sampler relying on a Single Program Multiple
Data implementation, in which all workers have a similar task.
This distributed strategy allows the computing time and volume
of communications to be reduced by separately handling blocks
of data and parameters on different workers. Experiments
on a large synthetic image inpainting problem illustrate the
performance of the proposed approach to produce high quality
estimates in a small amount of time.

Index Terms—Markov chain Monte-Carlo methods, dis-
tributed algorithm, inverse problems, Single Program Multiple
Data architecture.

I. INTRODUCTION

An inverse problem consists in inferring unknown latent
variables x ∈ RN from a collection of degraded and noisy
observations y ∈ RM . Observations and parameters are related
through an observation model of the form

y = D(Ax), (1)

where A ∈ RM×N is the measurement operator and
D : RM → RM models random perturbations affecting the
measurements. The first step in Bayesian inference consists in
forming the posterior distribution of the problem, combining
the information from the likelihood and the prior:

π(x | y) ∝ exp (−fy(Ax)− g(Bx)) , (2)

where fy : RM →]−∞,+∞] is the data-fidelity term related
to the statistical model of the observations, and B ∈ RP×N

and g : RP →] − ∞,+∞] forms the prior on x (e.g., total
variation (TV) norm). The difficulty of solving such problems
increases with the dimension of both the unknown variables
and the observations. In addition, these methods need to scale
to large number of parameters and observations to efficiently
handle high dimensional problems. To this end, a usual strat-
egy consists in distributing both parameters and observations
among several workers.
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Splitting optimization methods provide a large class of ver-
satile parallelizable and distributed methods for solving (1), by
minimizing the negative log-posterior. Among them, one can
cite the celebrated alternating direction methods of multipliers
(ADMM) [1], and more generally primal-dual algorithms [2]–
[5]. These approaches allow a maximum a posteriori (MAP)
estimate to be formed while efficiently exploiting the com-
puting resources available. However, in situations where the
ground truth is not available (e.g., in astronomical imag-
ing [6]), these approaches do not enable the uncertainty about
the provided estimates to be directly quantified.

Markov chain Monte Carlo (MCMC) are methods of choice
to obtain both estimates and associated credibility intervals
[7]. MCMC algorithms consists in drawing samples from the
posterior distribution (2). Nevertheless, they are often con-
sidered computationally too expensive to handle high dimen-
sional problems. Over the last decade, multiple authors have
proposed more versatile and scalable optimization-inspired
MCMC methods [8]–[11].

To the best of the authors’ knowledge, only a few distributed
samplers have been proposed in the literature [12]–[14]. The
so-called asymptotically exact data augmentation (AXDA)
approach [14] provides a framework to scale an MCMC
algorithm to larger dimensions via a variable splitting strategy
reminiscent of the ADMM (divide to conquer strategy). So
far, AXDA has exclusively been used to design distributed
algorithms relying on a client-server architecture, observing
that splitting variables are conditionally independent. A client-
server setting [12] is however limited in terms of distribution
flexibility, and may induce communication bottlenecks as all
workers (clients) need to communicate with the server.

In this work, we consider a class of inverse problems for
which couplings between latent parameters are localized, i.e.,
A and B in (2) are block-sparse, see Fig. 1 in Section II.
This is the case in applications such as image deconvolution
or inpainting. Such a specific structure is amenable to flexible
distributed strategies. Specifically, we introduce a versatile
MCMC algorithm leveraging the AXDA strategy. We propose
a Single Program Multiple Data (SPMD) [15] implementation
of the resulting distributed sampling method. Compared to a
client-server architecture, each worker involved in an SPMD
architecture is assigned a similar task, and communications
occur between a small number of neighbouring workers. For
the considered problem, a larger number of workers can be



involved in the sampling task, while reducing the volume of
the communications.

The rest of the paper is organized as follows. The model
considered in this work is introduced in Section II. To sim-
plify the presentation, the proposed application of the AXDA
framework is described in the case of an inpainting problem
in Sections III-A and III-B, leading to an original distributed
MCMC algorithm detailed in Sections III-C and III-D. Sec-
tion IV illustrates the performance of the proposed approach
on an image inpainting problem under a total variation prior,
in comparison with the sampler proposed in [13]. Conclusions
and perspectives are summarized in Section V.

II. PROBLEM DESCRIPTION

A. Block-sparse model description

In this work, we consider an inverse problem with cor-
responding posterior distribution (2), where the matrices A
and B have a block-sparse structure (i.e., induce localized
couplings between parameters). We further assume that both
the number of observations M and parameters N are of the
same order. We thus aim to distribute both the data and
the parameters over multiple workers. Let K ∈ N∗ be the
number of selected workers, with K ≤ min{M,N,P}. Let
the columns of A and B be split over the K workers.
We consider a compact overlap between workers. Precisely,
we assume that the number of rows with nonzero elements
affecting multiple parameter blocks is small compared to
min{⌊M/K⌋, ⌊P/K⌋}. In addition, these rows are assumed
to have a small number of nonzero overlapping elements
compared to ⌊N/K⌋. An example of such matrix structure
and splitting is illustrated in Fig. 1.

Most of the classical operators in image processing satisfy
these conditions, e.g., convolution, compressive sensing and
inpainting operators [16, Sections 3.4 and 13.3].

In the remainder, we consider inverse problems with this
structure. The noise is further assumed not to induce additional
correlations. This ensures that statistically independent blocks
of contiguous observations can be formed.

B. Observation model

According to the model structure introduced in Section II-A,
we assume that the observations y can be partitioned into K
statistically independent blocks y = (yk)1≤k≤K , where for
every k ∈ {1, . . . ,K}, yk ∈ RMk , and M =

∑
k Mk. Thus,

the operator D is separable as z = (zk)1≤k≤K ∈ RM 7→
D(z) = (Dk(zk))1≤k≤K . Then, for every k ∈ {1, . . . ,K},

yk = Dk(AkCkx), (3)

where Ck ∈ RÑk×N selects the Ñk contiguous entries from x

required to form yk, and Ak ∈ RMk×Ñk with N ≤
∑

k Ñk
1.

The matrices Ak and Ck are illustrated in Fig. 1.

1When N =
∑

k Ñk , the matrix A is block diagonal (up to a row
permutation), and there is no coupling between consecutive parameter blocks.

Fig. 1. Example of the block-sparse structure of the matrix A involved in (3).
The columns of A are split into contiguous blocks (dashed lines), with a small
overlap compared to ⌊N/K⌋. Each matrix Ak from (3) is in dashed orange
lines, and Ck selects the corresponding entries in x to form yk .

Assuming that D is block separable is equivalent to assum-
ing that the function fy in (2) is additively separable as

(∀x ∈ RN )(∀y ∈ RM ) fy(Ax) =
K∑

k=1

fyk
(AkCkx), (4)

where, for every k ∈ {1, . . . ,K}, fk : RMk →]−∞,+∞].
In this setting, each worker k can handle both a data

block yk and the corresponding parameter block xk, the latter
gathering most of the information contained in Ckx.

The assumption on the compact overlap, described in Sec-
tion II-A, illustrated in Fig. 1, ensures that for a worker
k ∈ {1, . . . ,K}, the elements of Ckx not stored on the
worker k can be collected by exchanging a small number of
parameters with the neighbouring workers {k − 1, k + 1}.

Note that (3) covers multiple noise models, including addi-
tive Gaussian noise with a (block) diagonal covariance matrix,
Poisson noise or multiplicative noise.

C. Prior model

Multiple classical priors involve linear operators with struc-
ture described in Section II-A. In our setting, we further
assume that g is block additively separable, similarly to f :

(∀x ∈ RN ) g(Bx) =

K∑
k=1

gk(BkDkx), (5)

where, for every k ∈ {1, . . . ,K}, gk : RPk →] − ∞,+∞],
Bk ∈ RPk×Nk , and Dk ∈ RNk×N is a selection operator.
Classical examples of this form include priors promoting
spatial correlations such as the TV [5], [17], sparsity in a
wavelet dictionary domain [18], or separable constraints such
as the non-negativity prior. Note that Dk is analogous to Ck

in (3), but can select a different neighbourhood of xk, dictated
by the structure of B.

III. PROPOSED DISTRIBUTED METHOD

Considering the model structure (3)–(5), the proposed ap-
proach leverages the AXDA framework [12], [14]. The under-
lying splitting strategy allows standard transition kernels to be
more easily applied (such as the Gibbs sampler [7]). It also
paves the way to distributed algorithms [12].



A. Inpainting problem

For the sake of simplicity, we introduce the proposed dis-
tributed algorithm for the particular inpainting inverse problem
considered for the experiments in Section IV. We also focus
on the particular case when the noise in (3) is an additive
white Gaussian noise. In this case, the matrix A is a selection
operator and the splitting strategy is only applied to the prior
term2. Hence, (3) and (4) respectively reduce to

(∀k ∈ {1, . . . ,K}) yk = Akxk +wk, (6)

and

(∀x ∈ RN )(∀y ∈ RM ) fy(Ax) =
1

2σ2

K∑
k=1

∥Akxk − yk∥22,

(7)
where Ak ∈ RMk×Nk is a selection operator only acting on
block xk, and wk is a realization of an additive white Gaussian
noise with variance σ2.

B. AXDA-based splitting structure

Applying AXDA with a Gaussian kernel to (2) leads to an
approximate model with posterior distribution

π̃
(
x, z,u | y

)
∝ exp

(
− h(x, z,u)

)
(8)

with

h(x, z,u) = fy(Ax) + g(z)

+
1

2α
∥Bx− z + u∥22 −

1

2β
∥u∥22, (9)

where (α, β) ∈]0,+∞[2, and (z,u) ∈ (RP )2 are auxiliary
variables associated with the prior. Considering the model
structure introduced in Section II, h can be rewritten as

h(x, z,u) =

K∑
k=1

hk(x, zk,uk), (10)

with, for every k ∈ {1, . . . ,K},

hk(x, zk,uk) =
1

2σ2
∥yk −Akxk∥22 + gk(zk)

+
1

2α
∥BkDkx−zk+uk∥22+

1

2β
∥uk∥22. (11)

The contribution of each function hk will be handled by a
single worker k ∈ {1, . . . ,K}. Then, the blocks xk, zk and uk

can directly be sampled from their corresponding conditional
distribution. This is possible provided the (small number of)
neighbouring elements have been exchanged with a suitable
communication strategy detailed in Section III-C and III-D.

2In the case of a non-Gaussian noise, one may need to introduce an
additional splitting variable in the likelihood term, following considerations
reported in Section III-D.

C. Client-server versus SPMD architecture

The client-server architecture usually adopted with the
AXDA approach [12], [14], exploiting conditional indepen-
dence between variables, has several limitations. First, the
number of processes that can be used is restricted to the
number of independent splitting variables considered (typically
less than 5). Second, the resulting algorithm does not allow
data and parameters to be simultaneously distributed at a low
communication cost. Finally, this architecture is not adapted to
configurations where blocks are unbalanced (i.e., with different
update costs and memory requirements per block). In this
context, load balancing issues and communication bottlenecks
may occur.

To address these issues, the separability assumptions (3)–
(5) can be exploited to design a distributed sampler relying
on an SPMD architecture [15]. This strategy overcomes the
limitations of the client-server setting, and offers multiple
advantages. First, each worker can simultaneously be assigned
a data block and the corresponding parameter block to main-
tain data locality. Second, the amount of redundancy between
different blocks can be controlled when distributing parts of
the inference task among multiple workers. Third, only a
limited number of parameters requires to be communicated
between neighbouring workers during the inference process.
This results in lower communication costs compared to a
client-server architecture.

D. Proposed algorithm

This section describes the structure of the proposed dis-
tributed sampler. The structure of π̃, given in equations (8)-
(10)-(11), ensures that each worker k can successively sample
the variables xk, zk and uk once a few parameter values
have been communicated between neighbouring workers. This
configuration can be efficiently addressed with an SPMD
architecture (see Section III-C).

We propose to combine a Gibbs sampler with the proximal
stochastic gradient Langevin algorithm (PSGLA) [10], [11].
Precisely, we use the Gibbs sampler as global structure to draw
samples of the different variables involved in (10). For the
variables whose full conditional distribution is not standard
(e.g., involving non-smooth potentials), we use a PSGLA
transition kernel. A detailed pseudo-code of the proposed
approach is given in Algorithm 1.

For every k ∈ {1, . . . ,K}, the PSGLA step in Algorithm 1
line 8 requires the gradient of hk with respect to xk to be
computed (see (11)). Communications are necessary to form
these gradients, due to the couplings induced by B between
blocks of parameters. Similar communications are necessary
to sample zk and uk in steps 10 and 11, respectively.

Note that the algorithm presented in this section can be
generalised to the full model described in Section II, when the
matrices Ck are not reduced to identity. In this context, the
coefficients of x selected by both Ck and Dk not contained in
xk can be communicated during a unique communication step.
This allows the number of communications to be reduced.



Algorithm 1: Proposed SPMD distributed sampler.
Input: (α, β, τ) ∈]0,+∞[3, NMC ∈ N∗

1 x(0) ∈ RN , (z(0),u(0)) ∈ (RP )2

2 ν = αβ(α+ β)−1; η = 0.99α;
3 γ = 0.99(1/σ2 + ∥BTB∥2/α)−1

4 for t = 0 to NMC − 1 do
5 for each worker k ∈ {1, . . . ,K} do in parallel

// Update x with PSGLA kernel [11]
6 Communications to compute ∇xkhk;

7 x
(t+1)
k = x

(t)
k − γ∇xkhk

(
x(t), (z

(t)
k ,u

(t)
k

)
+

√
2γξk,

8 with ξk ∼ N (0, INk×Nk );

9 Communications to compute BkDkx
(t+1);

// Update z with PSGLA [11]

10 z
(t+1)
k =proxηgk

(
z
(t)
k − η

α
(z

(t)
k −BkDkx

(t+1) −
u

(t)
k ) +

√
2ηζk

)
, with ζk ∼ N (0, IPk×Pk );

// Sample u from its full conditional

11 u
(t+1)
k ∼ N

(
ν
α
(z

(t+1)
k −BkDkx

(t+1)), νIPk×Pk

)
;

Output: (x(t),z(t),u(t))1≤t≤NMC

IV. APPLICATION TO IMAGE INPAINTING

This section illustrates the proposed approach on the in-
painting problem described in the previous section. Perfor-
mance assessment is conducted on synthetic data, in compar-
ison with the AXDA-based sampler [13, Section V-B] relying
on another splitting choice and MYULA [9] transition kernels.

A. Model and experimental setting

Model. The inpainting problem (6) is addressed with a TV
prior. It can be expressed as in (5) by taking B as the discrete
gradient operator (i.e., P = 2N ) and g = τ∥ ·∥2,1, with τ > 0
(see [17, Section 3.A]). The resulting posterior distribution
admits a factorization of the form (3)-(5).

Compared methods. The proposed approach is compared
with [13]. Note that it requires evaluations of the proximal
operator of the TV, and cannot leverage a client-server archi-
tecture, as the parameters are conditionally dependent.

Performance is evaluated in terms of runtime and quality of
the minimum mean square error (MMSE) estimator, denoted
by x̂. The latter is quantified in dB with the reconstruction
signal-to-noise ratio (SNR):

SNRx(x̂) = 20 log10

(
∥x∥2

∥x̂− x∥2

)
. (12)

Experimental setting. The sampler from [13] is systemat-
ically applied with the parameters provided by the authors,
i.e., (α, β, τ) = (9, 1, 0.2), using NMC = 5 × 103 and
using Nbi = 200 burn-in samples to form x̂. The proposed
approach uses (α, β, τ) = (9, 1, 0.2), with NMC = 104 and
Nbi = 5× 103.

All the experiments have been conducted on the high per-
formance computing grid of the University of Lille3. A single

3https://hpc.univ-lille.fr/
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Fig. 2. Strong-scaling experiment results: ground truth and observations (first
row), MMSE estimates (second row) and 95% credibility intervals (third row).
For the rows 2 and 3, the results of the serial sampler [13] are reported on the
left, those of the proposed approach on the right. Note that the credibility maps
do not have the same scale to better highlight the distribution of uncertainties.

compute node has been used, equipped with two 2.1 GHz, 18-
core, Intel Xeon E5-2695 v4 series processors (36 CPU cores
in total). Each worker thus corresponds to a single process
running on one CPU core. The proposed approach has been
implemented in Python using the mpi4py library [19].

Two experimental settings have been considered. Both are
composed of M = ⌊0.6N⌋ observations, corrupted with a
white Gaussian noise whose variance results in a 40 dB SNR.

a) Strong scaling experiment: For a fixed-size problem N =
256 × 256, the proposed algorithm is applied using an
increasing number of workers K ∈ {1, 2, 4, 8, 16}.

b) Large inpainting experiment: The reconstruction of an
N = 1024 × 1024 image using 16 cores is investigated
with the proposed sampler. Since the problem cannot be
addressed in a reasonable time with the serial sampler
from [13] and the proposed approach with K = 1, the
comparison is exclusively conducted in terms of per-
iteration runtime, computed over 10 iterations.

B. Results

a) Strong scaling experiment: The results of this experi-
ments are reported in Table I and Fig. 2. We can observe that
the proposed approach can provide estimators and confidence
intervals similar to those obtained with the serial sampler [13]
using a significantly smaller amount of time. In particular,
the proposed approach is 5 to 60 times faster than the one



TABLE I
STRONG SCALING EXPERIMENT RESULTS. THE RUNTIME PER ITERATION IS REPORTED ON AVERAGE OVER THE ITERATIONS, WITH THE ASSOCIATED

STANDARD DEVIATION. THE ACCELERATION FACTOR IS GIVEN WITH RESPECT TO THE PROPOSED SAMPLER WITH K = 1.

Method (number of cores) [13, Section V-B] (1) Proposed (1) Proposed (2) Proposed (4) Proposed (8) Proposed (16)

Runtime per sample (10−3 s) 65.56 (± 2.08) 12.21 (± 0.63) 6.07 (± 0.42) 3.50 (± 0.21) 1.93 (± 0.77) 1.08 (± 2.35)
Per-iteration acceleration factor 0.19 1 2.01 3.49 6.33 11.30
Total runtime (s) 262.20 61.04 30.37 17.50 9.63 5.38
SNRx(x̂) (dB) 23.33 23.45 23.46 23.48 23.44 23.48
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Fig. 3. Large scale inpainting experiment results. From left to right: ground
truth, observations and MMSE estimate obtained with the proposed approach.

proposed in [13], at the price of a slightly lower SNR value.
The 95% credibility intervals maps are displayed in the bottom
row of Fig. 2. Both approaches show larger uncertainties
on the contours, with lower uncertainty levels for the pro-
posed approach. The overall estimation quality and lower per-
iteration computing cost makes the proposed approach a highly
compelling alternative to [13] for high dimensional problems.

A close to ideal acceleration is observed from 2 to 8 cores,
decreasing around 16 cores (see Table I). As the number of
workers increases, the communication costs is expected to rep-
resent a larger load compared to the amount of computations
conducted by each worker. Overall, the proposed approach
shows a competitive strong scaling performance on a single
node from K = 2 to 16.

b) Large inpainting experiment: Dealing with the larger
problem, the serial sampler [13] would require almost 4 hours
to generate NMC = 104 samples, i.e., 1.35s per sample on
average. In comparison, the proposed approach with K = 1
would need less than 1 hour, with 0.23s per sample. Using
K = 16, only 90 seconds are needed (17.93 ms per sample on
average) to produce the MMSE estimator displayed in Fig. 3,
with SNRx = 26.60 dB. That is, a factor 75 acceleration
compared to [13], and 13 compared to K = 1. This illustrates
the ability of the proposed approach to form large image
estimates in a reasonable amount of time.

V. CONCLUSION AND PERSPECTIVES

We have considered an original application of the AXDA
framework to address large scale inverse problems with a
block-sparse structure. A versatile distributed sampler, leverag-
ing a combination of PSGLA and Gibbs transition kernels, has
been introduced to efficiently form estimators with quantified
uncertainty. The proposed sampler has been implemented
using an SPMD architecture, offering more flexibility in the
distribution of data and parameter blocks compared to alter-
natives based on a client-server architecture. Experiments on
a synthetic inpainting problem illustrated the remarkable per-
formance of the proposed approach, with accelerations nearly

proportional to the number of workers. Perspectives include
the application of the proposed approach to more general
problems and extensions to an asynchronous implementation.
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