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ABSTRACT

Hyperspectral super-resolution based on the coupled Tucker decom-
position has been recently considered in the remote sensing commu-
nity. Although competitive, the state-of-the-art approaches did not
fully exploit the coupling information contained in hyperspectral and
multispectral images of the same scene. In this paper, we propose a
new algorithm that overcomes the limitations of the state-of-the-art.
This method accounts for low-resolution information contained in
the observations, by solving a set of least-squares problems. In ad-
dition, we provide exact recovery conditions for the super-resolution
image in the noiseless case. Using a set of real datasets, we show
that the proposed algorithm achieves good reconstruction with small
complexity.

1. INTRODUCTION

Hyperspectral devices produce hyperspectral images (HSI) with
high spectral resolution. However, the compromise between signal-
to-noise ratio, spatial and spectral resolutions force the HSIs to have
low spatial resolution [1]. On the other hand, multispectral images
(MSI) have high spatial resolution, at the cost of a restricted num-
ber of spectral bands. The hyperspectral super-resolution (HSR)
problem [2] was formulated to recover a super-resolution image
(SRI) with both high spatial and high spectral resolutions from
co-registered HSI and MSI of the same scene.

Early matrix-based approaches to HSR [3, 4, 5, 6] were based
on the linear mixing model and performed a coupled low-rank fac-
torization of the matricized HSI and MSI. More recently, tensor ap-
proaches were envisioned, motivated by the 3-dimensional structure
of the observations, and possible uniqueness guarantees offered by
tensor low-rank factorizations. The works of [7, 8] were the first
to consider tensor-based HSR. Since then, various decompositions
were considered, with possible constraints on the low-rank factors,
see, e.g., [9, 10, 11, 12] and references therein.

The Tucker decomposition was steadily considered [13, 9, 12]
for solving the HSR problem. It was proved in [9] that exact re-
covery of the SRI could be achieved in the noiseless case, even if
the Tucker decomposition was not unique. Two algorithms based on
the Singular Value Decomposition (SVD) were proposed in [9]. The
first one was named Super-resolution based on COupled Tucker Ten-
sor approximation (SCOTT). It recovered the Tucker factors based
on several SVDs followed by solving a least-squares problem. The
second one assumed that the spatial degradation between the HSI
and SRI was unknown, therefore it was referred to as a blind version
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of SCOTT, namely BSCOTT (Blind-SCOTT). The Tucker model in
[9] was later extended to account for localized changes in [12].

However, these algorithms have a major limitation: they did not
fully exploit the coupling information between the low-resolution
observations and the SRI. The blind algorithm BSCOTT only ac-
counted for a portion of the coupling constraints between the ob-
servations. In contrast with BSCOTT, SCOTT was non-blind but
was highly sub-optimal. Indeed, the SVD step only extracted high-
resolution information from one single observation. Hence the low-
resolution information available from the observation model was to-
tally ignored. Moreover, since no iterations were performed, the so-
lution to the least squares problem did not incorporate the coupling
information to the Tucker factors.

In this paper, we propose a new Tucker-based algorithm that
overcomes the technical limitations of SCOTT and BSCOTT. This
new procedure fully accounts for the coupling constraints in the HSR
observation model. We propose a simple way to incorporate addi-
tional information to the Tucker factors. The SVD is performed on
both observations and is followed by solving a set of linear equa-
tions. We prove that exact recovery of the SRI is still achievable
with the proposed approach, however for a restricted range of multi-
linear ranks. To circumvent this limitation, we propose a block-wise
procedure that makes the rank conditions less restrictive. Our ex-
periments on real datasets show that the proposed approach achieves
good reconstruction performance with low complexity.

This paper is organized as follows. In Section 2 we introduce the
coupled Tucker model and the proposed algorithm. Section 3 con-
tains our recovery analysis for tensor reconstruction in the noiseless
case. Finally, Section 4 contains the numerical experiments.

Notation. In this paper we mainly follow [14, 15] in what con-
cerns the tensor notation. We use the symbol ⊠ for the Kronecker
product, and ⊙ for the Khatri-Rao product. We use vec{·} for the
standard column-major vectorization of a tensor or a matrix. By
tSVDR (X) we denote a matrix containing R leading right singular
vectors of the matrix X. Operation •p denotes contraction on the
pth index of a tensor; for instance, for a tensor A and a matrix M,
[A •1 M]ℓjk =

∑
ℓAijkMiℓ. For a tensor Y ∈ RI×J×K , its un-

foldings are Y(1) ∈ RJK×I , Y(2) ∈ RIK×J and Y(3) ∈ RIJ×K .
For a tensor G ∈ RR1×R2×R3 and matrices U ∈ RI×R1 , V ∈
RJ×R2 and W ∈ RK×R3 , the following shorthand notation is used
for the multilinear product:

[[G; U,V,W]] = G •
1
U •

2
V •

3
W. (1)

If, in addition, R1 = rank(Y(1)), R2 = rank(Y(2)) and R3 =

rank(Y(3)), then the multilinear product is called Tucker decompo-
sition of Y and (R1, R2, R3) are called the multilinear ranks.
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2. HYPERSPECTRAL SUPER-RESOLUTION

2.1. Problem statement and observation model

We consider an MSI tensor YM ∈ RI×J×KM and HSI tensor
YH ∈ RIH×JH×K acquired from sensors (for instance, LAND-
SAT or QuickBird). The MSI has higher spatial resolution than the
HSI (IH < I, JH < J), but it has some lower spectral resolution
(KM < K). The acquired MSI and HSI represent the same scene,
and YM and YH are viewed as two degraded versions of a single
SRI tensor Y ∈ RI×J×K . The HSR problem consists in recover-
ing Y from YM and YH . As commonly adopted in the literature
[7, 9, 10], we consider the following degradation model:{

YH = Y •1 P1 •2 P2 + EH ,

YM = Y •3 P3 + EM ,
(2)

where EM and EH are noise terms. The matrix P3 ∈ RKM×K is
the spectral degradation matrix, and P1 ∈ RIH×I , P2 ∈ RJH×J

are the spatial degradation matrices, i.e., we assume (for simplic-
ity) that the spatial degradation is separable. This assumption is
reasonable thanks to the commonly accepted Wald’s protocol [16],
that uses isotropic Gaussian blurring and downsampling for spatial
degradation.

Similarly to [9], we utilize a Tucker-based coupled model to
solve the reconstruction problem at hand. Assume that the SRI Y
admits a Tucker decomposition with given (fixed) multilinear ranks
R = (R1, R2, R3) as

Y = [[G; U,V,W]], (3)

where U ∈ RI×R1 , V ∈ RJ×R2 and C ∈ RK×R3 are the factor
matrices and G ∈ RR1×R2×R3 is the core tensor.

With these notations, the degradation model (2) becomes{
YH = [[G; P1U,P2V,W]] + EH ,

YM = [[G; U,V,P3W]] + EM .
(4)

The aim of HSR is to recover the factor matrices U, V, W and the
core tensor G from the coupled Tucker model (4).

2.2. Tucker-based HSR: state-of-the-art and its limitations

In [9], an algorithm was proposed to solve the Tucker-based HSR
problem. This algorithm, called Super-resolution based on COupled
Tucker Tensor approximation (SCOTT), consisted in three simple
steps. First, the factor matrices Û, V̂, Ŵ were recovered as the
dominant right singular vectors of the unfoldings Y

(1)
M , Y

(2)
M and

Y
(3)
H , respectively. Then, the core tensor Ĝ was reconstructed as:

argmin
G

fT (G, Û, V̂,Ŵ) = ∥YH − [[G; P1Û,P2V̂,Ŵ]]∥2F

+ λ∥YM − [[G; Û, V̂,P3Ŵ]]∥2F . (5)

This step consists in solving the following least-squares prob-
lem: [

Ŵ⊠P2V̂⊠P1Û√
λPMŴ⊠ V̂⊠ Û

]
︸ ︷︷ ︸

X

vec{Ĝ} ≈
[

vec{YH}√
λ vec{YM}

]
︸ ︷︷ ︸

z

,

that can be solved through normal equations of the form(
XTX

)
vec{Ĝ} = XTz. (6)

The matrix on the left-hand side of (6) can be written as

XTX = IR3 ⊠
(
V̂TPT

2P2V̂
)
⊠
(
ÛTPT

1P1Û
)

+λ
(
ŴTPT

MPMŴ
)
⊠ IR1R2 ,

(7)

and the vector on the right-hand side is

XTz = vec{[[YH ; ÛTPT
1 , V̂

TPT
2 ,Ŵ

T]]}

+λ vec{[[YM ; ÛT, V̂T,ŴTPT
M ]]}.

(8)

This step could be seen as solving a (generalized) Sylvester
equation, for which fast solvers were used, see e.g., [17] and refer-
ences therein. Finally, the low-rank approximation of the SRI was
reconstructed using (3). In [9], experiments on real images showed
the capabilities of SCOTT to solve the HSR problem with a low
computational complexity.

However, SCOTT suffered from major limitations. First, the es-
timation of the factor matrices was sub-optimal. For instance, Û was
recovered only from YM , hence the low-resolution spatial informa-
tion contained in YH was totally ignored. Recovery of V̂ and Ŵ
suffered from the same drawbacks. In other words, the second step
of SCOTT did not incorporate at all the additional low-resolution
information. As a result, SCOTT did not consider all the available
information from (4).

2.3. Proposed approach

In this paper, we propose an improved Tucker-based algorithm that
overcomes the limitations of SCOTT. In contrast with SCOTT, the
estimation strategy for U ,V, W accounts for the low-resolution
information from the observations. This strategy was considered in
[8] for tensor-matrix couplings. In BSCOTT1 [9], it was for estima-
tion of W only.

One specificity of model (2) is that high-resolution information
in one given dimension is always available in at least one observa-
tion. The full spectral information can be obtained from Y

(3)
H , while

the full spatial information is contained in Y
(1)
M and Y

(2)
M . There-

fore, the recovery of the factor matrices U, V, W underlying the
SRI will be driven by the high-resolution observations. The low-
resolution information will also be taken into account. In the follow-
ing, we will explain how to obtain W, and the factor matrices U and
V can be obtained similarly.

First, let us consider the third unfolding of the HSI, which con-
tains the full spectral information. This matrix admits a SVD as

Y
(3)
H = LHΣHWT

H , (9)

where WH ∈ RK×R3 contains the dominant right singular vectors
of Y

(3)
H , and gives an orthogonal basis for the fiberspace of YH .

Equation 9 offers a solution for recovery of the full spectral infor-
mation, and boils down to solving least-squares problems [18].

Note that, following (2), the HSI YH and the SRI Y share the
same fiberspace. Hence we can express the third unfolding of Y as

Y(3) = LΣWT
H . (10)

By unfolding (3) in the third dimension, we have

Y(3) =
[
(V⊠U)G(3)

]
WT,

1In [8] and BSCOTT, the spatial degradation was considered to be un-
known, hence the reconstruction problem different.
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which means that W lives in a low-dimensional subspace defined by
WH [19]. In other words, it holds that WHWT

HWT = WT.
Assuming that the subspace containing the spectral information

is of dimension R3, the equation (10) allows Y to be compressed
without loss of spectral information to a tensor Z ∈ RI×J×R3 such
as

Z = Y •3 WT
H .

Note that we can recover the SRI as Y = Z •3 WH . According to
(3), the third unfolding of Z can be written as

Z(3) =
[
(V⊠U)G(3)

]
WTWH =

[
(V⊠U)G(3)

] (
WT

HW
)T

.

Let us now consider the low-resolution information contained in
the MSI YM . From (2) in the noiseless case, we can write

YM = Y •3 P3 = (Z •3 WH) •3 P3 = Z •3 P3WH .

Therefore, the third unfolding of the MSI can be expressed using the
SVD as

Y
(3)
M = LMΣM

(
P3WHWT

HW
)T

= LMΣMWT
M .

where the matrix WM = P3WHWT
HW corresponds to the or-

thogonal projection of W on the fiberspace of Y , followed by spec-
tral degradation. This matrix is computed from the SVD of Y(3)

M .
Since W lives in the span of WH , and under the assumption

that R3 ≤ KM , the factor matrix WT
HW is recovered by solving

the overdetermined WM = P3WH

(
WT

HW
)
. The matrix W will

be obtained up to a term belonging to the span of WH . Since the
SVD provides the solution that minimizes the distance between the
span of W and that of WH , we finally obtain

W = WH (P3WH)† WM .

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Proposed approach
input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,

R1, R2, R3

output: Ŷ ∈ RI×J×K

1. UM ← tSVDR1

(
Y

(1)
M

)
, UH ← tSVDR1

(
Y

(1)
H

)
,

Û← UM (P1UM )†UH ;

2. VM ← tSVDR2

(
Y

(2)
M

)
, VH ← tSVDR2

(
Y

(2)
H

)
,

V̂← VM (P2VM )†VH ;

3. WM ← tSVDR3

(
Y

(3)
M

)
, WH ← tSVDR3

(
Y

(3)
H

)
,

Ŵ←WH(P3WH)†WM ;

4. Ĝ ← argmin
G

fT (G, Û, V̂,Ŵ);

5. Ŷ = [[Ĝ; Û, V̂,Ŵ]].

The ranks (R1, R2, R3) cannot exceed (IH , JH ,KM ), be-
cause the truncated SVD is performed on the degraded unfoldings
Y

(1)
H , Y

(2)
H , Y

(3)
M . As suggested in [8], we circumvent this limi-

tation by applying Algorithm 1 to corresponding non-overlapping
subblocks of the MSI and the HSI. This is based on the hypothesis
that smaller blocks in the observations are more likely to contain
a small number of materials and spatial features. Thus, YH and
YM are divided into corresponding L × L subblocks of spatial

Algorithm 2: Block version of Algorithm 1
input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K , R
output: Ŷ ∈ RI×J×K

Split YH and YM into corresponding subblocks;
for ℓ = 1, . . . , L do

Apply Algorithm 1 to the pair of blocks of YH and
YM , and store the result into the corresponding block
of Ŷ .

end

dimensions IH
L
× JH

L
and I

L
× J

L
, respectively. This strategy is

summarized in Algorithm 2.
The total computational complexity of Algorithm 1 is

• O(min(R1, R2, R3)(IJKM + IHJHK)) flops for the trun-
cated SVDs;

• O(min(R3
3 + (R1R2)

3;R3
1 + (R2R3)

3)) flops for solving
the Sylvester equation in Step 4.

The computational complexity of Algorithm 1 is dominated by the
cost of the truncated SVD. However, it can be smaller than that
of SCOTT, which required O(min(R1, R2)IJKM + R3IHJHK)
flops for recovery of the factor matrices.

3. RECOVERABILITY OF THE COUPLED MODEL

In this subsection, we give uniqueness results for the SRI tensor re-
covery by the approach of Algorithm 2.

3.1. Deterministic recovery

We begin with some deterministic results.

Theorem 3.1. Let a Tucker decomposition of Y with multilinear
ranks (R1, R2, R3) be

Y = [[G; U,V,W]],

where G ∈ RR1×R2×R3 , U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3

have full column rank. We also assume that EH ,EM = 0 in (2). If

rank
(
Y

(1)
M

)
=R1, rank

(
Y

(2)
M

)
=R2, rank

(
Y

(3)
H

)
=R3, (11)

and if

rank (P1U) = R1, rank (P2V) = R2, rank (P3W) = R3,
(12)

then Algorithm 1 recovers Y correctly. That is, there exists only one
Ŷ with multilinear ranks (R1, R2, R3) such that Ŷ •1 P1 •2 P2 =

YH and Ŷ •3 P3 = YM .
Conversely, if

rank(P1U)rank(P2U) < R1R2 and rank(P3W) < R3 (13)

then there exists infinitely many Ŷ of the form

Ŷ = [[Ĝ; Û, V̂,Ŵ]]

such that Ŷ •1 P1 •2 P2 = YH and Ŷ •3 P3 = YM .
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Proof. First, let us note that the conditions (11)–(12) in Theorem 3.1
allows for recovery of the factor matrices up to a change of basis. In
the following, we will prove it for U.
Indeed, by (4) we have YH = [[G; P1U,P2V,W]]. Since

rank (P1U) = R1 and rank (P2V) = R2, then rank
(
Y

(1)
H

)
=R1

and rank
(
Y

(2)
H

)
= R2. Moreover, by (11) rank

(
Y

(3)
H

)
= R3.

Therefore the multilinear rank of YH is (R1, R2, R3), which is
equal to that of Y . Moreover,

Y = YH •
1

(
U(P1U)†

)
•
2

(
V(P2V)†

)
.

Due to rank (P1U) = R1, Algorithm 1 recovers U up to a change of
basis, i.e., Z = UO, where O ∈ RR1×R1 is an orthogonal matrix.
Finally, we have

UO(P1UO)† = U(P1U)†,

which completes the proof for U. The proof for V and W can be
obtained likewise.

Now, let us prove how (13) implies the non-uniqueness of Ŷ . It
should be noted that the core tensor Ĝ can be obtained as a solution
to (5) through normal equations of the form (6). where XTX =
IR3 ⊠A+B⊠ IR1R2 . By [20, Theorem 13.16], the singular values
of XTX are all sums of the pairs of eigenvalues of

A =
(
V̂TPT

2P2V̂
)
⊠
(
ÛTPT

1P1Û
)
, B = λŴTPT

3P3Ŵ.

(14)
We also assume without loss of generality that U,V,W have or-
thonormal columns. Assume that rank(P1U)rank(P2U) < R1R2

and rank(P3W) < R3. If we set Û = U, V̂ = V, Ŵ = W, then
rank(A) < R1R2, rank(B) < R3 and rank(XTX) < R1R2R3.
Therefore the system (6) is underdetermined, and there is an infi-
nite number of solutions Ĝ ∈ RR1×R2×R3 . Note that if we de-
fine Ŷ = [[Ĝ; U,V,W]], then it is an admissible solution, i.e.,
Ŷ •3 P3 = YM and Ŷ •1 P1 •2 P2 = YH . Due to orthogonal-
ity of the bases, ∥Ŷ − Y∥F = ∥Ĝ − G∥F , which can be made
arbitrary large due to non-uniqueness of the solution to (6). Hence
the proof is complete.

3.2. Generic recovery

Theorem 3.2. Assume that P1 ∈ RIH×I , P2 ∈ RJH×J , and P3 ∈
RKM×K are fixed full row-rank matrices. Let

Y = [[G; U,V,W]],

where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K, and
U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random matrices,
distributed according to an absolutely continuous probability distri-
bution. We also assume that EM ,EH = 0 in (2).

If (R1, R2, R3) ≤ (IH , JH ,KM ), and

R1 ≤ R2R3, R2 ≤ R1R3 and R3 ≤ R1R2, (15)

then with probability 1 there exists a unique tensor Ŷ such that
ŶM = YM and ŶH = YH that can be recovered by Algorithm 1.

Proof. First, without loss of generality, we can replace P1, P2, P3

with the following of same size (see [9, Section V.B]):

P̃1 =

[
IIH
0

]T

, P̃2 =

[
IJH

0

]T

, P̃3 =

[
IKM

0

]T

. (16)

Therefore, under the assumptions on distribution of U, V, W
the following implications hold with probability 1

R1 ≤ IH ⇒ rank(U1:IH ,:) = R1,

R2 ≤ JH ⇒ rank(V1:JH ,:) = R2,

R3 ≤ KM ⇒ rank(W1:KM ,:) = R3.

Next, we are going to show how (15) imply (11). We will prove it
only for the first condition (the others are analogous). Note that the
first unfolding can be written as

Y
(1)
M = (W1:KM ,: ⊠V)G(1)UT.

Due to the dimensions of the terms in the product, this matrix is at
most rank R1. Due to semicontinuity of the rank function, Y(1)

H will
be generically of rank R1 if we can provide just a single example of
U, V, W, G, achieving the condition rankY(1)

M = R1. Indeed, if
R1 ≤ min(R3,KM )R2, such an example is given by

U =

[
IR1

0

]
,V =

[
IR2

0

]
,W =

[
IR3

0

]
,G(1) =

[
IR1

0

]
,

which completes the proof.

Remark 3.3. The above conditions for exact recovery of the SRI
were formulated in the noiseless case. This assumption, although
rather strong, can be justified by the fact that real hyperspectral and
multispectral images tend to have a high signal-to-noise ratio. In
practice, the rank conditions given in Theorem 3.2 guarantee exact
reconstruction under some small additive noise, hence the multilin-
ear ranks must be chosen accordingly. This matter will be discussed
in Section 4.1.

4. EXPERIMENTS

All simulations were run on a MacBook Pro with 2.4 GHz Intel Core
i5 and 8GB RAM. For basic tensor operations we used TensorLab
3.0 [21].

The reconstruction performance was evaluated using various
metrics used in [22], including Reconstruction Signal-to-noise Ratio
(R-SNR), Cross-Correlation (CC), Spectral Angle Mapper (SAM)
and Relative dimensionless Global Error in Synthesis (ERGAS). The
computation time was evaluated using the tic and toc functions
of MATLAB.

The spectral bands corresponding to water absorption were re-
moved. The HSI YH was obtained by spatial degradation of the
true SRI by P1 and P2 and the MSI YM was obtained by spectral
degradation by P3. White Gaussian noise was added to the observa-
tions to yield 30dB SNR. The spectral bands of YH and YM were
normalized and the true SRI was denoised [23]. The degradation ma-
trices P1, P2 were generated following the commonly used Wald’s
protocol [16] with a downsampling ratio d and a Gaussian kernel of
size q = 9. The matrix P3 contained the spectral response func-
tions of the Sentinel-2 instrument2. We compared our algorithm to
matrix-based approaches, including HySure [5], CNMF [3], GLP-
HS [24] and FUSE [25]. We chose the ranks and regularization pa-
rameters according to the original works. We also considered tensor
methods, namely STEREO [7] for CP decomposition, SCOTT and
BSCOTT [9] for Tucker and CB-STAR for block-term decomposi-
tion [12]. For these algorithms, we chose the ranks according to [12]
whenever possible.

2Available for download at https://earth.esa.
int/web/sentinel/user-guides/sentinel-2-msi/
document-library.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library


4.1. Choice of the ranks

We considered a portion of the Lockwood dataset with Y ∈
R88×88×173. The HSI Y was produced by degradation with a
downsampling ratio d = 2. We studied the impact of the multi-
linear ranks on the performance of Algorithm 2. We considered
two scenarios: the first one splits the observations into [2, 2] blocks
and the second one considers [4, 4] corresponding blocks. For each
scenario, we computed the R-SNR as a function of R1 = R2 and
R3 for ranks satisfying Theorem 3.2. The results were displayed in
Figure 1.

2 4 6 8 10

5

10

15

20

0

5

10

15

20

25

2 4 6 8 10

5

10

15

20

0

5

10

15

20

25

Fig. 1. R-SNR as a function of R1 = R2 and R3, [4, 4] (left) and
[2, 2]-block pattern (right), Lockwood.

In both cases, good performance could be achieved even if the
rank conditions were very restrictive. The best performance was ob-
tained for small R3, respectively R3 = 3 and R3 = 4, and large
R1 = R2 inside the exact recovery region. A drop of performance
could be observed for large R3. To explain this phenomenon, we
studied the singular values of the third unfolding of the HSI, namely
Y

(3)
H for the [2, 2]- and [4, 4]-block patterns. We averaged the sin-

gular values of the unfoldings of the subblocks of the HSI. The first
30 singular values were displayed in Figure 2.
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Fig. 2. Average singular values of subblocks of Y(3)
H , [4, 4] (left)

and [2, 2]-block pattern (right), Lockwood.

The elbows in the curves were coherent with the best R3 ob-
tained from Figure 1. Selecting higher R3 would preserve some of
the least significant singular values, leading the reconstruction to be
corrupted by noise. In following experiments, the multilinear ranks
were chosen according to Figure 1 so that they maximized the R-
SNR, and likewise for other datasets. The ranks are summarized in
Table 1.

4.2. HSI-MSI fusion

In this subsection, we assessed the performance of our approach for
fusion of an HSI and an MSI. We first considered the Lockwood

Dataset SCOTT STEREO CB-STAR

Lockwood (60, 60, 5) F = 50
(70,70,5)
(40,40,3)

Isabella Lake (60, 60, 5) F = 50
(50,50,5)
(40,40,3)

Pavia University (40, 40, 1) n/a (50,50,1)
(40,40,1)

Table 1. Tensor-based ranks used in the experiments.

dataset introduced in Section 4.1. We took [4, 4] and [2, 2]-block pat-
terns and we chose the multilinear ranks (11, 11, 3) and (22, 22, 4),
respectively. We also ran BSCOTT with [4, 4] blocks and ranks
(11, 11, 3), for comparison. The reconstruction metrics and com-
putation time were shown in Table 2, and the two best results of
each columns were displayed in bold. The numbers between brack-
ets for BSCOTT and Algorithm 2 denoted the number of blocks. In
Figure 3, we showed false color plots of the true and reconstructed
SRI by various algorithms, including Algorithm 2.

Algorithm R-SNR CC SAM ERGAS Time
Best ∞ 1 0 0 0

SCOTT 22.136 0.9464 3.28202 14.409 2.364
BSCOTT [4, 4] 26.705 0.9754 1.9568 10.901 0.1765

Alg. 3 [4, 4] 26.259 0.9745 1.9779 11.096 0.1384
Alg. 3 [2, 2] 26.544 0.9773 1.9626 10.14 0.1452
STEREO 27.604 0.9773 2.1199 19.494 2.255
CB-STAR 27.626 0.9805 1.8865 11.573 51.58

CNMF 22.663 0.9641 2.3962 14.095 4.605
GLP-HS 20.665 0.9387 2.5379 15.084 6.892
HySure 22.143 0.9470 3.4563 22.076 13.000
FUSE 23.006 0.9544 2.8842 9.6755 0.4874

Table 2. Reconstruction metrics, Lockwood.

Ref. STEREO CNMF

SCOTT BSCOTT Alg. 3

Fig. 3. False color plots of reconstructed SRI, Lockwood.

The second dataset was Isabella Lake with Y ∈ R88×120×173.
We used a downsampling ratio d = 2 for the HSI. For Algorithm 2
and BSCOTT, we considered ranks (11, 11, 5) and (22, 22, 5) for
the [4, 4] and [2, 2] splitting scenarios, respectively. The results were
available in Table 3 and Figure 4.



Algorithm R-SNR CC SAM ERGAS Time
Best ∞ 1 0 0 0

SCOTT 25.360 0.9842 3.5027 9.3365 2.270
BSCOTT [4, 4] 27.663 0.9892 2.4672 6.6404 0.1707

Alg. 3 [4, 4] 27.319 0.9891 2.4733 6.6369 0.1523
Alg. 3 [2, 2] 27.374 0.9895 2.7336 6.9333 0.1589
STEREO 29.119 0.9902 2.7780 9.8351 2.902
CB-STAR 26.788 0.9881 2.9085 7.7640 15.07

CNMF 24.975 0.9882 2.5073 8.3610 5.737
GLP-HS 21.483 0.9742 3.2290 9.1432 9.845
HySure 22.023 0.9706 5.4772 12.8442 15.81
FUSE 24.505 0.9846 3.0626 7.6932 0.7477

Table 3. Reconstruction metrics, Isabella Lake.

Ref. STEREO CNMF

SCOTT BSCOTT Alg. 3

Fig. 4. False color plots of reconstructed SRI, Isabella Lake.

In both examples, the CP-based algorithm STEREO usually
yielded the best metrics. It was followed by BSCOTT and Algo-
rithm 2, that gave competitive results both visually and in terms of
metrics. The results of SCOTT were slightly lower, and comparable
to those of other matrix-based approaches, such as CNMF. Algo-
rithm 2 had the lowest computation time for our implementation,
that was comparable to that of BSCOTT.

4.3. Pansharpening

We also addressed the pansharpening problem, which consists in fu-
sion between an HSI YH and a panchromatic image YP of the same
scene. The panchromatic image has one single spectral band corre-
sponding to the full spectral range of the SRI, hence YP ∈ RI×J

and P3 ∈ RK×1.
The CP approach is unfeasible for this problem, since it would

require CP-rank F = 1. Nevertheless, we could still compare our
approach to other matrix-based algorithms. For Algorithm 2 and
BSCOTT, we took ranks (12, 12, 1) and (25, 25, 1) for the [4, 4] and
[2, 2] splitting scenarios, respectively. The results were shown in
Table 4 and Figure 5, respectively.

Although the performance of our algorithm were usually lower
than that of matrix methods, it was comparable to that of BSCOTT
and even slightly outperformed SCOTT, at a lower computational
cost. Visually, the quality of the reconstruction was slightly worse
and the block pattern was visible. Despite these difficulties, the pro-
posed approach was still able to recover the main details of the im-
age.

Algorithm R-SNR CC SAM ERGAS Time
Best ∞ 1 0 0 0

SCOTT 9.8176 0.7473 15.991 10.076 2.377
BSCOTT [4, 4] 11.3274 0.8182 13.091 8.5843 0.2171

Alg. 3 [4, 4] 11.2986 0.8172 13.221 8.6121 0.1847
Alg. 3 [2, 2] 10.7388 0.7941 14.454 9.1427 0.2598
CB-STAR 10.0096 0.7600 15.847 9.8705 19.873

CNMF 17.1372 0.9529 5.833 4.6912 2.610
GLP-HS 16.1599 0.9419 6.538 5.1209 10.42
HySure 11.7478 0.8437 13.233 8.1935 121.5
FUSE 16.074 0.9408 6.829 5.1833 0.8814

Table 4. Reconstruction metrics, Pavia University.

Ref. STEREO CNMF

SCOTT BSCOTT Alg. 3

Fig. 5. False color plots of reconstructed SRI, Pavia University.

5. CONCLUSION

In this paper, we proposed an improved Tucked-based algorithm for
the HSR problem. It is able to exploit the low-resolution informa-
tion in the model, to improve the reconstruction performance. We
gave exact recovery guarantees for the SRI in the noiseless case by
the proposed approach We showed that this new algorithm reaches
state-of-the-art performance for HSR and pansharpening at a low
complexity, in spite of restrictions on the multilinear ranks. The
good reconstruction performance of the proposed method naturally
raise the question of its statistical efficiency. Since the algorithm
fully exploits the coupling constraints between the Tucker factors,
we expect it to be asymptotically efficient for tensor reconstruction.
This matter will be investigated in future works.
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