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Abstract. The study of turbulent flows calls for measurements with high 
resolution in both space and time. We propose a new approach to reconstruct 
high-temporal–high-spatial resolution velocity fields by combining two 
sources of information that are well resolved either in space or in time, 
the low-temporal–high-spatial (LTHS) and the high-temporal–low-spatial 
(HTLS) resolution measurements. In the framework of co-conception 
between sensing and data post-processing, this work extensively investigates 
a Bayesian reconstruction approach using a simulated database. A Bayesian 
fusion model is developed to solve the inverse problem of data reconstruction. 
The model uses a maximum a posteriori estimate, which yields the most 
probable field knowing the measurements. The direct numerical simulation 
(DNS) of a wall-bounded turbulent flow at moderate Reynolds number 
is used to validate and assess the performances of the present approach. 
Low-resolution measurements are subsampled in time and space from the 
fully resolved data. Reconstructed velocities are compared to the reference 
DNS to estimate the reconstruction errors. The model is compared to other 
conventional methods such as linear stochastic estimation and cubic spline 
interpolation. Results show the superior accuracy of the proposed method in 
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all configurations. Further investigations of model performances on various 
scales demonstrate its robustness. Numerical experiments also permit one 
to estimate the expected maximum information level corresponding to 
limitations of experimental instruments.

Keywords: turbulence
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1. Introduction

Turbulence, though governed by the Navier–Stokes equations, is extremely hard to 
predict due to its spatiotemporal intermittency as well as three-dimensional and irregu-
lar properties. It is also a multi-scale phenomenon where a very wide range of scales 
from the largest eddies to Kolmogorov microscales coexist and interact. Since the ratio 
between the largest and the smallest scales increases with Reynolds number as Re3/4, 
flows with high Reynolds number are the most challenging. Wall-bounded flows are 
particularly dicult to model due to the overlap of several scaling regions as a function 
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of distance to the wall. Coherent structures in such flows can extend up to several 
boundary layers in thickness. The modeling of such structures and scales therefore 
requires extremely detailed flow information in both space and time.

Despite constant progress, none of the experimental techniques, even in academic 
research, is capable of providing spatiotemporally resolved information in suciently 
wide spatial domains and for diverse flow conditions. Particle image velocimetry 
(PIV)—the most advanced turbulence measurement technique—cannot measure space-
time resolved velocities. Stereoscopic PIV measures three-component velocities at high 
spatial resolution and with a large field of view, but is limited to a low acquisition rate 
compared to the flow dynamics. High-repetition tomographic PIV and time-resolved 
PIV (TrPIV) are improving but still limited to small volumes and low-speed flows. 
Other point-measurement techniques such as hot wire anemometry (HWA) measure 
the full temporal dynamics. However, the combination of HWA devices to get better 
spatial resolution is not straightforward and remains intrusive.

Direct numerical simulation (DNS) can provide reliable and fully resolved veloci-
ties of turbulent flows. It simulates the flows by directly solving the Navier–Stokes 
equations. The computational cost of such a numerical approach is very high since the 
number of simulated grid points increases as Re9/4. DNS therefore can simulate only 
flows with low to moderate Reynolds number and simple geometries.

To have fully resolved velocities, one idea is to measure and combine two types of 
complementary measurements in space and time: the low-temporal–high-spatial resolu-
tion (LTHS) and the high-temporal–low-spatial resolution (HTLS) measurements. One 
particular example of such an idea is presented in [1]. This joint experiment provides a 
database of boundary layer flows with high Reynolds number. The data are provided 
by stereoscopic PIV synchronized with a rake of HWA probes. PIV has a large field of 
view and a high spatial resolution but low acquisition frequency. HWA measurements 
have extremely high temporal resolution, but the spatial discretization of the rake of 
probes is very coarse compared to Kolmogorov scales.

Various methods have been proposed to combine such measured data of turbu-
lent flows to recover the maximum information level. Linear stochastic estimation 
(LSE) is the most common one. Its introduction into the turbulence community 
dates back to the works by Adrian [2, 3] and it has been further investigated since 
[4–6]. These works use LSE as a tool to extract coherent structures from the mea-
surements. Later works proposed various extensions such as multi-time, nonlinear or 
higher-order LSE [7–10]. In these works, unknown velocities are reconstructed from 
measurements of other quantities such as pressure or shear-stress. LSE can be also 
linked to proper orthogonal decomposition (POD) to reduce the order of reconstruc-
tion problems [11].

The idea of combining sparse velocity measurements to obtain fully resolved fields 
was not addressed until recently [12, 13]. In [12], 3D smoke intensity and 2D PIV mea-
surements are combined using a POD-LSE model to get fully resolved 3D velocities of 
a flow over a flat plate. The POD-LSE estimation model has been developed further 
[13] with a reconstruction scheme based on a multi-time LSE. Either a Kalman filter or 
a Kalman smoother is used, depending on whether the problem is real-time estimation 
or data post-processing. The model is tested using TrPIV measurements of a blu-body 
wake at a low Reynolds number. Sparse velocity measurements are extracted virtually 
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from the high-resolution ones, while original data are used to estimate reconstruction 
errors.

LSE suers from critical limitations though it is used extensively. First, as a con-
ditional average, LSE estimates a set of coecients that associate the so-called condi-
tional eddies to one flow pattern [3]. Using these coecients to reconstruct all velocity 
fields, LSE fails to capture coherent structures and misleads physical interpretations 
when particular patterns exist. Second, the reconstructed structures are independent of 
event magnitudes [14]. Reconstructed flows are associated with weak fluctuations only. 
Last, LSE as a low-pass filter reconstructs large scales only and loses flow details even 
at measured positions.

The present work proposes a novel model to reconstruct the fully resolved HTHS 
velocities from HTLS and LTHS measurements. This model is based on a Bayesian 
inference framework using a maximum a posteriori (MAP) estimate [15]. It is inspired 
by the multispectral image fusion problem with the limited resolution of image mea-
surements in space-wavelength domains [16]. This framework was discussed early in 
communication problems [17, 18] and is used more extensively in image processing, 
remote sensing and data fusion [19–25]. The Bayesian fusion model takes benefit from 
both sources of information in space and time simultaneously by searching for the most 
probable flow for given measurements. Better performances are expected since space 
and time correlations are equally important. The model also recovers flow details that 
are inaccessible from single interpolations. By integrating the measurements directly, it 
proposes a compromise estimate such that detailed flow information close to the sensor 
positions is well preserved. This approach also overcomes the limitations of LSE, which 
acts as a low-pass filter due to the minimization of mean square error. To test the 
model, the DNS database of a turbulent wall-bounded flow is used. These space-time 
fully resolved data allow optimization and validation of the model. Sparse measure-
ments of HTLS and LTHS are extracted from the full dataset, while the reference DNS 
data are used in the end to evaluate reconstruction errors. Performances are evaluated 
for various configurations with dierent subsampling ratios.

The paper is organized as follows. Section 2 presents the Bayesian model using a 
MAP estimate. Model simplification and estimation of statistical parameters are also 
discussed. Section 3 describes the DNS database used to test the model and also other 
reconstruction methods for comparison. Results for various configurations are pre-
sented. Conclusions and future works are discussed in section 4.

2. Bayesian fusion model

2.1. Bayesian model

Let x and y denote LTHS and HTLS measurements, and z denote HTHS data to recon-
struct. z, x and y are random, zero-mean vectors of size ×NP 1, ×NQ 1 and ×MP 1 
respectively. N and M are numbers of spatial points in each snapshot, while P and Q 
are numbers of snapshots. The present work is a challenging inverse problem since we 
consider �M N  and �Q P. Let the subscript ‘s’ denote operators performing in space, 
and ‘t’ be those in time; I is an interpolator; S is for subsampling; L is a low-pass filter 
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(LPF). The cubic spline interpolation, either 1D or 2D, is used as I for its state-of-the-
art interpolation results and finite support [26, 27]. L is a fifth-order least-squares spline 
filter [28, 29] for its sharp cuto response to better separate large scales from small 
scales. Table 1 lists all notations used in this paper.

The direct model of the measurement system involves the subsampling operator and 
some measurement noises:

S= +x z bt t (1)

S= +y z bs s (2)

where bt and bs are the (typically white Gaussian) measurement noises. Therefore, 
given sparse measurements of either y in space or x in time, two estimators ẑ1 and ẑ2 
of the fully resolved vector z can be reconstructed by single interpolations. The 1D 
time interpolation goes from NQ- to NP-dimensional space, i.e. ⟼ ˆ I=x z xt1 , while 
the 2D space interpolation goes from MP- to NP-dimensional space, i.e. ⟼ ˆ I=y z ys2 . 

Table 1. Summary of notation.

z NP-dimensional vector of HTHS DNS data
y MP-dimensional vector of HTLS measurements
x NQ-dimensional vector of LTHS measurements
N number of spatial points in each HTHS/LTHS snapshot
M number of spatial points in each HTLS snapshot
P number of HTHS or HTLS snapshots
Q number of LTHS snapshots
It 1D cubic spline interpolator in time

Is 2D cubic spline interpolator in space

St subsampling in time from P to Q snapshots, S =z xt

Ss subsampling in space from N to M points, S =z ys

Ls 2D fifth-order least-squares spline filter in space

Lt 1D fifth-order least-squares spline filter in time

κ∆ loss of kinetic energy computed using equation (28)

ε normalized root mean square error (NRMSE) defined in 
equation (36)

| |. determinant of a matrix

uT transpose of vector u

( )argmax .
z

argument of the maximum, which is z for which the 
function attains its maximum

u 2∥ ∥Σ square of a Mahalanobis distance: u u uT2 1∥ ∥ = ΣΣ
−

∥ ∥u 2
2 square of a Euclidean distance: u u uT

2
2∥ ∥ =

( )N∼ Σn 0, n Gaussian noise vector of zero mean and covariance  
matrix Σn

( | )N µ Σu ,u n Gaussian distribution of variable u that takes the mean 
µu and fluctuates

due to n of covariance Σn
( | )N u v distribution of u knowing (or conditional on) v

http://dx.doi.org/10.1088/1742-5468/2015/00/000000


a Bayesian fusion model for space-time reconstruction of finely resolved

6doi:10.1088/1742-5468/2015/00/000000

J. S
tat. M

ech. (2015) 519267

Let NP -dimensional vectors hs and ht denote the information that cannot be recov-
ered by simple interpolations; z can be modeled in two ways from these separate 
estimates:

ˆ I= + = +z z h x ht t t1 (3)

ˆ I= + = +z z h y hs s s2 (4)

Missing information ht and hs essentially feature small scales. Using either x or y, it is 
not possible to estimate ht and hs. The idea of Bayesian fusion is to combine the two 
models by using I xt  in (3) to estimate the unknown hs in (4) and vice versa.

Let ( | )N µ Σu ,u u  denote the multivariate Gaussian distribution of an NP-dimensional 
random vector u with mean value µu and covariance matrix Σu. The ×NP NP matrix 
is the expectation of ( )( )µ µ− −u uu u

T. The probability density function (pdf) of u 
with a multivariate Gaussian distribution ( | )N µ Σu ,u u  is

( )
( )

∥ ∥µ
π

=
|Σ |

− − Σ⎜ ⎟
⎛
⎝

⎞
⎠u up

1

2
exp

1

2u
uNP/2 1/2

2
u (5)

where | |.  denotes the matrix determinant, and ∥ ∥µ− Σu u
2
u
 is the Mahalanobis distance:

∥ ∥ ( ) ( )µ µ µ− = − Σ −Σ
−u u u .u u n u

T2 1
n (6)

Let us assume that I xt  and ht are approximately independent; I xt  captures large tem-
poral scales of x. Similarly, I ys  and hs are assumed to be approximately indepen-
dent. Due to subsampling, aliasing terms are also present in each pair of ( )I x h,t t  and 

( )I y h,s s . Assume also that ht and hs are zero-mean Gaussian noises, i.e. ( )N∼ Σh 0, ht t  
and ( )N∼ Σh 0, hs t . Pdfs of these unknowns are modeled as

⎜ ⎟
⎛
⎝

⎞
⎠h hp

1

2
exp

1

2h
t NP t/2 1/2

2
h

t

t
( )

( )
∥ ∥

π
=

|Σ |
− Σ (7)

and similarly for ( )hp s . Posterior distributions of z knowing either x or y are then mod-
eled as

( | ) ( | )IN N∼ Σz x z x, ht t (8)

( | ) ( | )IN N∼ Σz y z y, hs s (9)

where ( | )N z x  (respectively ( | )N z y ) is the posterior distribution of z knowing x (respec-
tively knowing y).

2.2. MAP estimation

The present Bayesian model aims to build an estimate of z given x and y using the 
probability models (8) and (9). The model uses a MAP estimate to search for the most 
probable ẑ given x and y such that ẑ maximizes the posterior pdf ( | )z x yp , :

http://dx.doi.org/10.1088/1742-5468/2015/00/000000
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ˆ ( | )=z z x ypargmax , .
z

 (10)

Using Bayesian rules [30], one has

( | ) ( | ) ( )∝z x y x y z zp p p, , . (11)

Assuming that x and y are independent conditional on z, equation (11) becomes

( | ) ( | ) ( | ) ( )∝z x y x z y z zp p p p, . (12)

In equation (12), the likelihood functions ( | )x zp , ( | )y zp  and the prior pdf ( )zp  appear, 
while only the posterior probabilities ( | )z xp  and ( | )z yp  are available in (8) and (9).

To complete the model, the likelihood functions can be expressed in terms of the 
posterior pdfs and prior of z using Bayesian rules. section 2.3.3 in [31] introduces an 
alternative way to estimate these functions from posterior pdfs using a linear Gaussian 
model. Various tests of dierent Gaussian priors ( )zp  lead to the use of a noninforma-
tive prior. This prior, referred to also as a vague or flat prior, assumes that all the 
values of z are equally likely [32]. The estimation of ẑ is now solely based on the mea-
surements and not influenced by external information. The prior distribution therefore 
has no influence on the posterior pdfs.

With the assumption of a noninformative prior, ( )zp  is constant. Using Bayesian 
rules, the relation between the likelihood function and the posterior pdf is

( | ) ( | ) ( )∝z x x z zp p p . (13)

Since ( )zp  is replaced by a constant, one gets ( | ) ( | )∝x z z xp p . ( | ) ( | )∝y z z yp p . 
Equation (12) becomes

( | ) ( | ) ( | )∝z x y z x z yp p p, . (14)

The MAP estimation is

ˆ ( | ) ( | )=z z x z yp pargmax .
z

 (15)

Logarithms of ( | )z xp  and ( | )z yp  are

z x z xp Cln
1

2
t

2
1ht

( ) ∥ ∥− | = − +ΣI (16)

z y z yp Cln
1

2
s

2
2hs

( ) ∥ ∥− | = − +ΣI (17)

where C1 and C2 are independent of x, y and z. Solving (15) is equivalent to minimiz-
ing the cost function

( ) ∥ ∥ ∥ ∥= − + −Σ ΣI Iz z x z yC
1

2

1

2
.t s

2 2
h ht s (18)

Computing the gradient of ( )zC  and setting to zero:

( ) ( ) ( )I I∂
∂

= Σ − +Σ − =− −z

z
z y z x

C
0,h hs t

1 1
s t (19)

the solution to the optimization problem (10) is

http://dx.doi.org/10.1088/1742-5468/2015/00/000000
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ˆ ( ) ( )I I= Σ +Σ Σ + Σ− − − − −z y x .
h h h hs t

1 1 1 1 1

t s s t (20)

Applying the matrix inversion lemma [15],

( ) ( )+ = − +− − − − − − −A BD C A A B D CA B CA ,1 1 1 1 1 1 1 (21)

equation (20) can be rewritten as

ˆ ( ) ( )I I= Σ +Σ Σ + Σ−z y x .h h h hs t
1

t s t s (22)

Equation (22) is the final full form of the proposed Bayesian fusion model using a MAP 
estimate and assuming a noninformative prior of z. Variance matrices Σht and Σhs are 
parameters to be estimated.

2.3. Model simplification

Though providing the full theoretical estimate of ẑ, equation (22) is impractical to use 
as it is for several reasons. The full covariance matrices Σht and Σhs, representing all the 
sources of correlations in space and time, cannot be estimated from only the measure-
ments x and y. This is because the unknown ht and hs are only accessible at the mea-
sured positions in space and time. Also, the covariance matrices of size ×NP NP are 
very large, making them very dicult to estimate accurately and to invert. Additional 
assumptions on the shape of Σht and Σhs are necessary.

A common and simple approach is to assume diagonal covariance matrices. This 
implies the independence between all elements of ht and hs. The simplified version of 
equation (22) becomes a point-wise formula:

ˆ( )
( )

( ) ( )
( )

( )
( ) ( )

( )I I
σ

σ σ

σ

σ σ
=

+
+

+
z x yi

i

i i
i

i

i i
i

h

h h

h

h h

t s

2

2 2

2

2 2
s

s t

t

s t

 (23)

where i(t, s) is the index of each point in time (t) and space (s). The variances σh
2

s
 and 

σh
2

t
 are functions of each position in space and time. Their estimation is detailed in the 

next section. Then equation (23) will be used to reconstruct HTHS data. As a weighted 
average, it proposes a compromise estimate from the measurements. With a symmetri-
cal form in space and time, the model uses information from both measurements to 
correct large-scale reconstruction and recover certain information at smaller scales.

2.4. Estimation of statistical parameters

Let Z, X, Y, Ht, Hs, Γht and Γhs be the (time, space) matrix forms of z, x, y, ht, hs, σh
2

t
 

and σh
2

s
 respectively. Z, Ht, Hs, Γht and Γhs are of size ×P N , while X and Y are of size 

×Q N  and ×P M . Γht and Γhs are matrices of empirical variances, which are functions 
of time and space (t, s).

Variance matrices are estimated from Ht and Hs, which are available at the mea-
surement positions only. We use

S I S= −H X Xt s s s (24)

http://dx.doi.org/10.1088/1742-5468/2015/00/000000
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S I S= −H Y Ys t t t (25)

where St subsamples in time from time steps P to Q, and Ss subsamples in space from 
points N to M . These Q instants and M positions are the same as for LTHS and HTLS 
measurements. Since the flow is approximately stationary and spatial interpolation is 
independent of time, ( )Γ t s,hs  becomes ( )Γ shs , a function of spatial locations only. These 
variances are estimated by averaging over all time steps:

( ) ( ( ) ( ))I S∑Γ = −
=

s
Q

X t s X t s
1

, , .h

t

Q

s s

1

2
s (26)

The variance in Γht is a function of distance τ to the previous LTHS time step only, 
where τ δ =t P Q/ 0, 1, 2, ..., / , and δt is the time lag between two consecutive HTHS time 
steps. Γht becomes a function of space and τ only, i.e. ( )τΓ s,ht . It is estimated by aver-
aging over Q blocks (of P/Q snapshots) bounded by two consecutive LTHS instants:

( ) ( ( ) ( ))I S∑τΓ = −s
Q

Y t s Y t s,
1

, ,h

t

s t t s
2

t

s

 (27)

where ( )δ τ δ τ δ τ δ τ δ= + + + −t t t t P Q t P Q t Q P Q/ / , / / , / 2 / , ..., / 1 /s . Since the flow is 
approximately homogeneous in the spanwise direction, ( )Γ shs  and ( )τΓ s,ht  are also aver-
aged over all blocks defined by the four neighboring HTLS measurements, see figure 2. 
The variances are then functions of only vertical positions and relative distances to 

the four closest HTLS sensors. These estimated variances are rearranged into a vec-

tor form ( )σ ih
2

t
 and ( )σ ih

2
s

 to complete the fusion model using the simplified formula in 

equation (23).

3. Numerical experiments

Section 3.1 describes the DNS database used to test the model. Section 3.2 discusses 
other reconstruction methods for comparison. Section 3.3 presents results of the fusion 
model in various cases.

3.1. DNS database

DNS database of a turbulent wall-bounded flow is used to test the model. This simula-
tion uses the numerical procedure described in [33]. The flow is at a Reynolds number 
=τRe 550 based on the friction velocity. Cartesian coordinates of the simulation in 

space are (x, y, z) for streamwise, vertical and spanwise directions respectively. The 
domain size × ×L L Lx y z normalized by half the channel height H is π π× ×2 2 . Fully 
resolved fluctuating streamwise velocities in a plane normal to the flow direction are 
considered as HTHS data. These data include =P 10 000 snapshots at a spatial resolu-
tion of = ×N 288 257 and sampling frequency of 40 Hz. Sparse LTHS and HTLS mea-
surements are subsampled from HTHS data to learn the fusion model. HTHS is used 

http://dx.doi.org/10.1088/1742-5468/2015/00/000000
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as the ground truth to estimate reconstruction errors. The extension to spanwise and 
vertical velocity components follows the same procedure.

Various cases are investigated. The subsampling ratios N M/  applied in each direc-

tion of space are 5, 10 and 20. These ratios correspond to a number M of HTLS sen-
sors of ×51 57, ×26 29 and ×13 15 respectively. Each ratio has a spacing between two 
successive HTLS points in spanwise and vertical directions of ∆z and ∆y. Subsampling 
ratios P/Q in time are 4 (Q  =  2500), 10 (Q  =  1000) and 20 (Q  =  500). Each ratio, both 
in space and time, corresponds to a certain amount of energy loss. This is essentially 
the energy of small scales separated from large scales by a low-pass filter L. Here L is 

Figure 1. Sketch of the inverse problem, with the two sources of measurements: 
the LTHS (color images) and a coarse grid of HTLS (red dots among the black 
ones of LTHS). The inverse problem of HTHS data reconstruction is to fill in the 
space-time data-cube.

Figure 2. Sketch of an element block with local coordinates ( )α β τ, , . LTHS time 
steps are at τ δ =t/ 0 and τ δ =t P Q/ / . HTLS measurements are represented by red 
dots and LTHS measurements by black ones.
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the fifth-order least-squares spline filter, either temporal 1D (Lt) or spatial 2D (Ls), 
using measurements as knots. This spline filter has the advantages of a sharp cuto 
response and finite support. The energy loss is defined by comparing the filtered field 
Lz and the original field z:

[ ]L
J J

J

κ∆ =
∑ − ∑

∑

∈ ∈

∈

z z

z

j
j

j
j

j
j

2 2

2
 (28)

where J is the considered set of points. Table 2 gathers the energy loss in time ( κ∆ t) 
and in space ( κ∆ s) estimated with Lt and Ls respectively. The set J contains all points 
at y/H  =  1 .

3.2. Other methods for comparison

Other reconstruction methods are used for comparison with the present model.

3.2.1. Cubic spline interpolation. Interpolation techniques reconstruct HTHS veloci-
ties from either LTHS or HTLS measurements independently, i.e. ⟼ ˆ I=x z xt  or 

⟼ ˆ I=y z ys . The cubic spline interpolations [26], either 1D in time or 2D in space, are 
used. These interpolations are by Matlab built-in functions, which follow the algorithm 
in [34].

3.2.2. Linear stochastic estimation. LSE estimates ẑ as a linear combination of mea-
surements. Coecients are estimated from the measurements by solving a system of 
linear equations to minimize the mean square errors of reconstructed fields. References 
[3, 5] describe the physical interpretations of this procedure. This section derives the 
model dierently [31, 35] but in accordance with turbulence literature.

Matrix forms X , Y and Z described in section 2.4 are used to build the LSE model. 
Let S=Y Ys t  of size ×Q M  denote a part of Y subsampled at the same instants as X . 
The LSE model finds the optimal matrix B of size ×N M  that minimizes the residual 
sum of squared errors:

B Y B Xargmin
B

s 2
2∥ ∥= − (29)

Let us set the gradient of this residual sum to zero:

∥ ∥
( )

∂ −
∂

= − =
Y B X

B
Y YB X 0,

s
s
T

s
2
2

 (30)

then the optimal B is obtained as

( )=
−

B Y Y Y X.
s
T

s s
T1

 (31)

Equation (31) requires the inversion of ( )Y Ys
T

s , which can be singular, leading to a high 
variance model with large coecients. A small change of predictors Y can then lead to 
a very dierent reconstruction of Z, causing the model’s instability. Tikhonov regular-
ization [36], well known in machine learning problems as L2 penalty or ridge regression 
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[31, 35], can be used as a remedy. It aims to solve this ill-posed problem by imposing an 
L2 penalty term on the residual sum of errors. The optimization problem (29) becomes

B Y B X Bargmin .
B

s 2
2

2
2∥ ∥ ∥ ∥λ= − + (32)

Setting the gradient of the cost function (for λ> 0) to zero,

Y B X B

B
Y YB X B 0

s
s
T

s
2
2

2
2(∥ ∥ ∥ ∥ )

( )λ
λ

∂ − +
∂

= − + = (33)

the closed form of B is

( )λ= +
−

B Y Y I Y X.
s
T

s s
T1

 
(34)

The regularization parameter λ can be optimized by ten-fold cross-validation [37]. The 
fully resolved field of Z is then estimated using these coecients:

=Z YB. (35)

Matrix B encodes the predictor of Z knowing Y learnt from the joint observation of 
X and Y. A completely analogous procedure can be used that switches the roles of  
X and Y.

3.3. Results

3.3.1. Impact of subsampling ratios. The fusion model uses equation (23) to recon-
struct fully resolved velocities ẑ in various cases. Reconstructed fields are compared 
with the original DNS via the normalized root mean square error (NRMSE):

( ˆ )
J

J

=
∑ −

∑

∈

∈

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

z z

z
NRMSE

j
j j

j
j

2

2

1/2

 (36)

where J is the considered set of points used to estimate the error. The field z is more or 
less dicult to estimate depending on the considered instant and position with respect 
to available measurements. To qualify, two types of NRMSE, the mean NRMSE ε  and 
the maximum NRMSE εmax, are estimated. ε  is estimated over J including all space-
time positions in the outer region of [ ]∈y H/ 0.25, 1.75 , where the flow is approximately 
homogeneous. It represents how far the reconstructed field departs from ground truth in 
order to evaluate the reconstruction accuracy. εmax is estimated using all blocks (in time 
and in spanwise directions) bounded by HTLS sensors at y/H  =  0.94 and y/H  =  1.06, 
see figure 2. The set J includes centers at local coordinates ( )δ∆ ∆y z P t Q/2, /2, /2  of all 
blocks. ε  and εmax of I ys , I xt  and LSE reconstruction are also estimated for comparison.

Table 2 describes seven cases with their settings and reconstruction errors. In cases 
1 and 2, the energy losses due to subsampling in time are much higher than those in 
space, and vice versa in cases 3 and 4. The model gives similar errors to the best inter-
polation, with smaller ε  and comparable εmax. In cases 5 to 7, the losses are due to both 
the subsamplings in space and time in a balanced manner. The proposed model reduces 
ε  by 15% to 30% and εmax by 10% to 20% compared to the best of other methods.
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Improvements are expected from the weighted average in equation (23). The pres-

ent model uses variances ( )σ is
2  and ( )σ it

2  as parameters of the flow’s physics, and I xt  
and I ys  as the specific flow information. It imposes the reconstruction to be consistent 
with measurements at nearby positions and proposes compromise estimates elsewhere. 
Simple interpolations use either HTLS or LTHS measurements only, losing information 
from the other source. LSE learns its coecients from both measurements but inherits 
the limitations of the conditional averaging.

3.3.2. Reconstruction at large and small scales. In cases 1 to 4, the fusion model per-
forms as the best interpolation with small improvements. This is expected since one 
measurement of HTLS or LTHS is much better resolved than the other. Cases 5 to 7 
are the most interesting since energy losses due to subsampling in space and time are 
comparable. The model brings complementary information from both measurements 
and improves the reconstruction.

We study reconstructions of large and small scales in detail for these three cases. 
Spatial 2D filters Ls (see section 3.1) are used to separate large scales from small 
scales. These filters take HTLS points as knots to have a cuto close to the Nyquist 
frequency. The large scales reconstructed by all methods are compared to the ref-
erence L zs . Small scales are estimated using L−I s where I is the identity matrix. 
Table 3 shows NRMSEs estimated using equation (36) but normalized by the RMS 
of either L zs  or ( )L− zI s .

The fusion model recovers part of the small scales from complementary measure-
ments. It gives the lowest ε  and εmax of small-scale reconstruction in all cases. It also 
reconstructs large scales better than other methods. For large scales, εmax remains the 
same in case 5 of small subsampling ratios and improves significantly in cases 6 and 
7 of high ratios, with εmax reduced by 5% and 25% respectively, and ε  by 20% to 40% 
compared to the best of other methods.

3.3.3. Model performance analysis. We focus on case 6 for a model performance anal-
ysis. This case has about 5% energy losses due to both time and space subsamplings, 
which are critical to highlight interests of the present approach. The model reduces ε  

Table 3. NRMSEs of large and small scales.

Case

ε εmax

I ys I xt LSE Fusion I ys I xt LSE Fusion

Reconstruction at large scales

5 0.08 0.09 0.10 0.05 0.06 0.15 0.11 0.07
6 0.24 0.25 0.24 0.15 0.22 0.45 0.28 0.21
7 0.56 0.36 0.51 0.30 0.60 0.66 0.60 0.46

Reconstruction at small scales

5 0.98 0.56 0.73 0.55 0.98 0.86 0.89 0.81
6 0.98 0.81 0.90 0.70 0.97 1.15 1.07 0.92
7 0.99 0.92 0.95 0.78 0.93 1.08 0.90 0.86

Note: Notations are explained in table 2.
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and εmax by 25% and 35% respectively for reconstruction at all scales, and by 10% and 
5% for large-scale reconstruction.

To analyze reconstructions in space, figure 3(a) shows spatial NRMSE maps from 
all methods as functions of local coordinates ( )α β, . For each ( )α β, , NRMSE is esti-
mated using equation (36), where J includes points at ( )α β δP t Q, , /2  of all blocks 
used to estimate εmax (see section 3.3.1). For all methods, NRMSEs are small close 
to the four HTLS positions in the corners and increase when approaching the cen-
ter. Time interpolation behaves dierently since its errors are independent of spatial 
coordinates. The fusion model yields the smallest errors at all positions. It improves 
significantly near the center compared to spatial interpolation, the best of other 
methods.

To analyze reconstructions in time, figure 3(b) shows the NRMSE curves from all 
methods as functions of distances τ from the previous LTHS time step. For each τ, 
NRMSE is estimated using J including points at local coordinates ( )τ∆ ∆y z/2, /2,  of 
all blocks used to estimate εmax. NRMSEs are small close to the LTHS measurements 

Figure 3. NRMSEs between reference streamwise velocities and those reconstructed 
by all methods as: (a) functions of spatial coordinates in an element block at 
the most dicult instant, i.e. at ( )α β δP t Q, , /2 ; (b) functions of time separations 
from the previous LTHS instant at the most dicult spatial location, i.e. at 
( )τ∆ ∆y z/2, /2, .

Figure 4. A time evolution of fluctuating streamwise velocity at y/H  =  1 and 
z/H  =  0 , the centers of all such ( )α β,  planes in figure 2.
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Spatial interpolations are dierent with NRMSEs independent of time. The fusion 
model yields the minimum errors at all time steps. Even in the middle of two LTHS 
instants, the maximum fusion error remains significantly lower than that of all other 
methods.

Figure 4 shows a time evolution of the point at y/H  =  1 and z/H  =  0 (α = ∆y/2 and 
β = ∆z/2 in local coordinates), the most remote from its neighboring HTLS sensors. A 
good agreement between fused and reference velocity is still obtained. A zoom-in period 
is shown also for detailed comparisons with other methods. While time interpolation 
captures only low frequencies, spatial interpolation generates high frequencies but they 
are weakly correlated with the truth. The fusion model proposes a good compromise 
to improve both large- and small-scale reconstruction. It also captures detailed peaks 
much better than LSE, since LSE smooths these small scales out by minimizing the 
mean square errors.

Figure 5. Spectra of the fluctuating velocity in figure 4.

Figure 6. Probability distribution functions of velocity increments in (left) the 
original DNS amd (right) the reconstructed field.
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Figure 5 compares temporal spectra of the above evolutions. Time interpolation 
fails to estimate the signal at frequencies above a certain cuto. LSE keeps both large 
and small scales, but the loss of large-scale energy is critical. This loss is highlighted 
in the enlarged picture of low spectral frequencies. The present model improves the 
estimation at both low and high frequencies.

Figure 6 shows estimates of the probability density function of time increments 
( ) ( )τ+ −u x t u x t, ,  for the original DNS field as well as for the reconstructed field. 

As expected, the original field displays intermittent non-Gaussian distributions. More 
importantly, the reconstructed field, while less intermittent, still clearly exhibits non-
Gaussian increments at small scales. Note that the reconstruction error is essentially due 
to the diculty of accurately reconstructing these small scales. It is expected that any 
reconstruction method will lead to fields that are less intermittent than the original one.

Figure 7. A sample snapshot of fluctuating streamwise velocity at one of the most 
dicult instants to estimate (in the middle of two LTHS time steps): reconstruction 
of all scales (left) and large scales only (right). The figure is best viewed on screen.
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Figure 7 compares snapshots reconstructed by dierent methods. This snapshot 
is at the instant most remote from its two neighboring LTHS time steps. The model 
reconstructs the velocity field correctly with more flow details than spatial interpola-
tion. It also recovers large scales better than LSE and time interpolation methods.

4. Conclusions

This work proposes a Bayesian fusion model using a MAP estimate to reconstruct high-
resolution velocities of a turbulent channel flow from low-resolution measurements in 
space and time. It searches for the most probable field given available measurements. 
This approach yields a simple but ecient weighted average formula in equation (23). 
Weighting coecients are learnt from measurements and encode the physics of the 
flow. The informed fusion of information from available measurements improves the 
interpolation of large scales and recovers details at small scales.

Numerical experiments using a DNS database of a turbulent wall-bounded flow at 
a moderate Reynolds number illustrate the eciency and robustness of the proposed 
method. Low-resolution measurements are extracted to learn model parameters, while 
original data are used as the ground truth to estimate reconstruction errors. The model 
is tested in various cases with dierent subsampling ratios. Results are compared to 
more standard methods such as cubic spline interpolation and penalized LSE. Bayesian 
fusion always produces the most accurate reconstruction. The best results are obtained 
when missing spatial and temporal information are of the same order of magnitude. In 
these cases, it provides a better large-scale reconstruction while a certain amount of 
small-scale detail is also recovered. The search for an even more accurate fusion and 
super-resolution method is the subject of ongoing work.
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