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ABSTRACT

A new approach towards linear time-invariant (LTI) filtering
of bivariate signals is proposed using a tailored quaternion
Fourier transform. In the proposed framework LTI filters are
naturally described by their eigenproperties providing eco-
nomical, physically interpretable and straightforward filtering
definitions in the frequency domain. It enables an easy design
of LTI filters and a simple method for spectral synthesis of bi-
variate signals with prescribed frequency polarization proper-
ties. It also yields various natural decompositions of bivariate
signals. Numerical experiments illustrate the approach.

Index Terms— bivariate signal, polarization, LTI filter-
ing, quaternion Fourier transform

1. INTRODUCTION

Bivariate signals appear in many fields of application such as
seismology [1], optics [2], oceanography [3], etc. Usual rep-
resentations involve either vectors x(t) = (x1(t), x2(t)) or
complex signals x(t) = x1(t) + ix2(t). In either case, next
step is the description of linear time-invariant (LTI) filters as
a cornerstone of signal processing [4]. The complex repre-
sentation leads to the so-called widely linear filters [5–8] that
perform distinct operations on the signal and its conjugate.
The vector representation is more common in physical sci-
ences, e.g. in polarization optics [9, 10]. LTI filters are then
described in the spectral domain by 2 × 2 complex matrices
called Jones matrices. Such systems combine two essential
physical effects which are birefringence and diattenuation;
there are anisotropic optical properties. Existing approaches
exhibit a number of limitations since they do not feature all
the desirable properties of a complete framework to describe
bivariate LTI filters: (i) the ability to manipulate bivariate sig-
nals as single algebraic objects for calculations (in contrast
with e.g. rotary components [11]), (ii) a comfortable dual-
ity between time and frequency to define easily interpretable
Fourier representations (in contrast with e.g. Jones matrices),
(iii) a simple representation of LTI filters in terms of their
main properties (e.g. eigenvectors/values of Jones matrices).
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We have recently proposed a powerful alternative frame-
work based on a quaternion Fourier transform (QFT) for
bivariate signal processing [12, 13] that provides a compact
and elegant calculus corresponding to geometric handling of
polarization states. It naturally connects usual physical quan-
tities to well-defined mathematical (quaternionic) quantities:
spectral densities, covariances, time-frequency representa-
tions, etc. Note that, with the same motivations, previous
works in optics [14, 15] have proposed to use Pauli algebra
rather than quaternions. However they deal with monochro-
matic signals only and miss a nice time-frequency duality.

The proposed framework enables an efficient description
of LTI filters gathering all the desired properties mentionned
above and overcomes the limitations of previous approaches.
Thus LTI filters can be easily described and designed in terms
of their main properties. Their effect on a signal is easy to in-
terpret or prescribe since the proposed representation explic-
itly involves their eigenproperties. LTI filters consist of the
action of 2 filters: an unitary filter corresponding to birefrin-
gence, and a Hermitian filter corresponding to diattenuation
[10, 16]. Based on this usual decomposition, this paper de-
scribes each family using a QFT description of the frequency
response. Such a framework facilitates the spectral synthe-
sis of bivariate signals with prescribed frequency-polarization
properties as well as the design of specific filters. Moreover it
provides a natural path toward various useful decompositions
of bivariate signals as illustrated by numerical experiments.

2. BACKGROUND

2.1. Quaternion spectral representation

Quaternions. They form a 4D algebra denoted by H with
canonical basis {1, i, j,k} such that

i2 = j2 = k2 = −1, ijk = −1, (1)

and where multiplication is non-commutative, e.g. ij = −ji.
A quaternion q ∈ H has a scalar or real part S(q) ∈ R and a
vector or imaginary part V(q) = q − S(q) ∈ span {i, j,k}.
When S(q) = 0, q is said to be pure. Quaternions encompass
complex numbers: thus standard notions such as conjugation,
modulus, polar forms or rotations are readily extended. See
e.g. [17] for a complete review on properties of quaternions.



Spectral representation. Let x(t) = x1(t) + ix2(t) a bi-
variate signal where x1, x2 are real signals. It is a quaternion-
valued signal taking values only in Ci ≜ span {1, i}. This
representation of bivariate signals coupled with a tailored
quaternion Fourier transform (QFT) is at the core of our
framework. The QFT of x(t) is defined by [12, 18]:

X(ν) =

∫ +∞

−∞
x(t)e−j2πνtdt ∈ H, (2)

which is very similar to the usual FT: the axis i of the FT
has simply been replaced by j. This QFT features many nice
properties as well as numerical efficiency (relying on FFT) for
the analysis of the spectral content of bivariate signals [12].
In particular it decomposes bivariate signals into a sum of
monochromatic polarized signals. The polar form of X(ν)
explicitly features meaningful polarization parameters. More-
over the Hermitian-like symmetry permits to define the polar-
ization spectrogram, a novel time-frequency-polarization rep-
resentation of bivariate signals, see [12] for details.

Remark: in full generality, dealing with random signals
requires the proper statement of a spectral representation the-
orem based on the QFT, see Theorem 1 in [13]. In the sequel,
signals are supposed either deterministic or random (second-
order) stationary.

2.2. Quaternion spectral density

In [13] we have demonstrated that a quaternion power spec-
tral density (PSD) can be adequatly defined. It has an ele-
gant interpretation in terms of frequency-dependent polariza-
tion attributes and is directly related to the well-known Stokes
parameters in optics [9, 13]. This quaternion PSD summa-
rizes the second-order spectral properties of stationary bivari-
ate signals. Its interpretation as a density is guaranteed by a
generalized Parseval theorem for the QFT [12]. The quater-
nion PSD of a stationary bivariate signal x(t) reads:

Γxx(ν) = S0,x(ν)︸ ︷︷ ︸
scalar part

+Φx(ν)S0,x(ν)µx(ν)︸ ︷︷ ︸
vector part

∈ H. (3)

It involves two distinct quantities. Its scalar part (also called
the total PSD)1, S0,x(ν) ≥ 0 is standard and characterizes the
power distribution over frequencies. Its vector part describes
the evolution over frequencies of the polarization properties
of x. Given any ν, the polarization axis µx(ν) is a pure unit
quaternion which describes the shape of polarization. For
instance when µx(ν) = ±j the signal shows linear hori-
zontal/vertical polarization at this frequency; when µx(ν) =
±i it has counter-clockwise/clockwise circular polarization.
Note that for an arbitrary axis µ, ±µ denote orthogonal (in

1The term “total” refers to the fact that S0,x(ν) contains power contri-
butions from the unpolarized and polarized part, see [13]. Note also that
S0,x(ν) is the first Stokes parameter, corresponding to the “intensity” in op-
tics [9].

the usual sense) polarizations. The degree of polarization
Φx(ν) ∈ [0, 1] quantifies the amount of polarized compo-
nents at every frequency. When Φx(ν) = 0 (resp. = 1) the
signal is unpolarized (resp. fully polarized) at ν; otherwise
it is partially polarized. The quaternion PSD expression (3)
is intimately related to the Poincaré sphere [9], making the
vector part of the quaternion PSD easy to interpret in terms of
polarization properties [13, 19].

3. LINEAR TIME-INVARIANT FILTERING

The quaternion formalism provides a straightforward under-
standing of linear time-invariant (LTI) filters for bivariate sig-
nals. Natural interpretations and efficient design of filters are
granted thanks to filtering relations directly involving eigen-
properties. Remarkably described filters match well-known
polarization properties of linear media: birefringence and di-
attenuation (also called dichroism) [16].

LTI filters for bivariate signals fall into two complemen-
tary classes: unitary filters and Hermitian filters. Filtering
relations are given by Propositions 1 and 2 below. They are
given in the spectral domain since (i) polarization properties
are intrinsically related to monochromatic components and
(ii) no practical convolution-like expression exists for these
filters. Input and output of filters are denoted by x(t) and
y(t), with QFTs X(ν) and Y (ν), respectively. Symmetry
conditions on filter parameters ensure that y(t) is a Ci-valued
bivariate signal. See [19] for proofs and additional details.

3.1. Unitary filters

An unitary filter makes the polarization axis of the input rotate
and leaves the degree of polarization and total PSD invariant.
This is known as birefringence. Three quantities define this
filter: a birefringence axis µ(ν), birefringence angle α(ν) and
phase φ(ν), both in [0, 2π).

Proposition 1 (Unitary filter). The filtering relation is

Y (ν) = eµ(ν)
α(ν)

2 X(ν)ejφ(ν), (4)

with µ(−ν) = −iµ(ν)i, α(−ν) = α(ν) and φ(−ν) =
−φ(ν). The quaternion PSD of y(t) is

Γyy(ν) = eµ(ν)
α(ν)

2 Γxx(ν)e
−µ(ν)

α(ν)
2 (5)

The quantity φ(ν) is standard and gives the time delay
corresponding to every frequency. Eq. (5) shows that such
filter performs a 3D rotation of the quaternion PSD. This ro-
tation is defined by the birefringence parameters: its angle
α(ν) and its axis µ(ν). Plugging (3) into (5) one sees that the
total PSD and degree of polarization are invariant: S0,y(ν) =
S0,x(ν) and Φy(ν) = Φy(ν), so that only the input polariza-
tion axis µx(ν) is rotated.



Let us fix ν and drop this dependence for simplicity. An
unitary filter has two orthogonal fully polarized eigenpolar-
izations Z± with axes µz± = ±µ. Corresponding outputs
are simply delayed:

e
µα
2 Z±e

jφ = Z±e
j(φ±α). (6)

Using a classical terminology of birefringence, Z+ is the fast
eigenpolarization and Z−(ν) is the slow eigenpolarization.
Remarkably the knowledge of these two eigenpolarizations
along with associated delays completely define the filter.

3.2. Hermitian filters

A Hermitian filter affects both total PSD and polarization
properties of the input. It is defined by three quantities: a
homogeneous gain K(ν) ≥ 0, a diattenuation axis µ(ν) and
a polarizing power η(ν) ∈ [0, 1].

Proposition 2 (Hermitian filter). The filtering relation is

Y (ν) = K(ν)[X(ν)− η(ν)µ(ν)X(ν)j] (7)

with K(−ν) = K(ν), η(−ν) = η(ν), µ(−ν) = −iµ(ν)i.
Using (3), the quaternion PSD of y(t) is then given by (drop-
ping ν dependence for convenience)

S (Γyy) = S0,xK
2
[
1 + η2 + 2ηΦx ⟨µ,µx⟩

]
(8)

V (Γyy) = S0,xK
2
[
2ηµ+Φx[µx − η2µµxµ

]
(9)

where ⟨µ1,µ2⟩ = S(µ1µ2) is the usual inner product of R3.

Let us now fix ν and omit this dependence for conve-
nience. Like unitary filters, a Hermitian filter has two orthog-
onal, fully polarized eigenpolarizations Z± with axes µz± =
±µ. From (7) one has

K[Z± − ηµZ±j] = K[1± η]Z±. (10)

Eq. (10) shows that the two eigenpolarizations are asymetri-
cally scaled. This effect is controlled by the polarizing power
η and is an illustration of diattenuation. The gain of the filter
is defined as:

G =
S0,y

S0,x
= K2

[
1 + η2 + 2ηΦx ⟨µx,µ⟩

]
(11)

Importantly the alignment ⟨µx,µ⟩ between input polarization
axis µx and diattenuation axis µ modulates G. This effect is
majored for η = 1 and for fully polarized signals Φx = 1.
When η = 0 then the gain reduces to G = K2: there is no
polarization-dependent effects. Remarkably, given filter pa-
rameters K and η eigenpolarizations Z± corresponds to max-
imum and minimum values of the gain G. When the filter has
maximum polarizing power (η = 1) then it is a polarizer at
this frequency. The output quaternion PSD is:

Γyy = 2S0,xK
2 (1 + Φx ⟨µx,µ⟩) (1 + µ) (12)

The output is fully polarized. The gain is modulated by the
input degree of polarization Φx and the projection of the input
polarization axis µx onto the diattenuation axis µ.

4. APPLICATIONS

4.1. Spectral synthesis by Hermitian filtering

On one hand, the response of an Hermitian filter to an unpo-
larized white Gaussian noise (WGN) gives a practical identi-
fication method. The input unpolarized WGN2 w(t) has con-
stant quaternion PSD Γww(ν) = σ2

0 ≥ 0, with σ2
0 the noise

variance [13]. Let x(t) denotes the output of Hermitian filter-
ing of w(t). The output quaternion PSD is

Γxx(ν) = σ2
0K

2(ν)[1 + η2(ν) + 2η(ν)µ(ν)]. (13)

Filter parameters η(ν) and µ(ν) completely define the output
polarization state and can be identified by estimating Γxx(ν).

On the other hand, Eq. (13) provides a way to simulate
any Gaussian stationary bivariate signal with arbitrary quater-
nion PSD by Hermitian filtering of unpolarized WGN. It ex-
tends a well-known spectral synthesis method for scalar sig-
nals [20]. Let Γ0(ν) = S0(ν)[1 + Φ0(ν)µ0(ν)] the desired
quaternion PSD. Identifying (13) with (3), one gets the pa-
rameters of filter matching the desired quaternion PSD Γ0(ν)

η(ν) =
1−

√
1− Φ2

0(ν)

Φ0(ν)
(Φ0(ν) ̸= 0)

K(ν) =
√

S0(ν)/σ2
0(1 + η2(ν))

µ(ν) = µ0(ν)

(14)

and η(ν) = 0 when Φ0(ν) = 0. Fig. 1b gives the parame-
ters of this signal. The total PSD corresponds to a bandpass
second-order system. Importantly polarization properties are
constant over frequencies: it is partially elliptically polarized,
Φx = 0.8 and µx = −2/5i+ 3/5j − 3/5k. Fig. 1a presents
a simulated sequence of length N = 1024 obtained following
a classical approach [20]; see also [19] for details. This sig-
nal is used in the next experiments. Of course, much richer
signals could be similarly obtained.

4.2. Orthogonal polarizations decomposition

In many situations bivariate signals are resolved into a pair of
orthogonally, fully polarized components: e.g. linear horizon-
tal vertical polarization, or counter-clockwise and clockwise
circular polarization. This decomposition can be generalized
to any arbitrary polarization axis µ, suggesting that x(t) reads

x(t) = x+
µ(t) + x−

µ(t) (15)

where x+
µ(t) and x−

µ(t) are two orthogonally polarized com-
ponents with polarization axes µ(ν) and −µ(ν), respectively.

It is possible to obtain such decompositions by LTI fil-
tering. Since they are fully polarized, it is necessary to use
Hermitian filters with polarizing power η(ν) = 1. These

2Unpolarized WGN is equivalent to proper WGN [13].
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Fig. 1. (a) Partially elliptically polarized signal of Sec. 4.1 obtained by spectral synthesis, which is used in all subsequent
simulations; (b) total PSD and polarization parameters used in (a); (c) and (d) uncorrelated orthogonally polarized components
along µx(ν) and −µx(ν); (e) and (f) orthogonal circularly polarized components, also known as rotary components.

filters are known as polarizers, see Section 3.2. The defi-
nition of two orthogonal filters imposes that their diattenua-
tion axes are +µ(ν) and −µ(ν). The condition ∀ν,X(ν) =
X+

µ (ν)+X−
µ (ν), the QFT of (15), constrains the value of the

gain K(ν) = 1/2 so that

X+
µ (ν) =

1

2
[X(ν)− µ(ν)X(ν)j] (16)

X−
µ (ν) =

1

2
[X(ν) + µ(ν)X(ν)j] . (17)

Note that components x+
µ(t) and x−

µ(t) are in general corre-
lated. The two components are uncorrelated (provided that
x(t) is partially polarized at all frequencies) if and only if the
two filters are orthogonal and µ(ν) = µx(ν).

Fig. 1c and 1d present the two uncorrelated compo-
nents obtained for µ(ν) = µx(ν). Fig. 1e and 1f de-
pict the two orthogonal circular components obtained with
µ(ν) = i. Remarkably, this decomposition of the signal
into counter-clockwise and clockwise circular components
gives the (correlated) rotary components, widely used in both
signal processing and oceanographic communities [3, 11].

5. CONCLUSION

A new approach towards LTI filtering of bivariate signals us-
ing a quaternion Fourier transform has been proposed. Recall
that the QFT is efficiently computed using FFT. It enables a
compact, elegant and directly interpretable definition of LTI
filters that explicitly features their eigenproperties. Thus it
facilitates the design of filters as the combination of an uni-
tary and a Hermitian filter, which correspond respectively to
birefringence and diattenuation effects in polarization optics.
In particular, the proposed approach makes spectral synthesis
straightforward in terms of frequency-dependent polarization
properties. Moreover any bivariate signal can be decomposed
into two uncorrelated and/or orthogonal components. Beyond
these simple illustrations, this generic framework paves the
way to new opportunities in the modeling, design and pro-
cessing of bivariate signals, see [19] for more details, e.g.
Wiener filtering.
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