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Abstract—Gravitational waves are polarized. Their polariza-
tion is essential to characterize the physical and dynamical
properties of the source i.e., a coalescing binary of two compact
objects such as black holes or neutron stars. Observations with
two or more non coaligned detectors like Virgo and LIGO
allow to reconstruct the two polarization components usually
denoted by h+(t) and h×(t). The amplitude and phase rela-
tionship between the two components is related to the source
orientation with respect to the observer. Therefore the evolution
of the polarization pattern provides evidence for changes in the
orientation due to precession or nutation of the binary. Usually,
some specific direct dynamical model is exploited to identify the
physical parameters of such binaries. Recently, a new framework
for the time-frequency analysis of bivariate signals based on
a quaternion Fourier transform has been introduced in [1]. It
permits to analyze the bivariate signal combining h+(t) and
h×(t) by defining its quaternion embedding as well as a set of
non-parametric observables, namely Stokes parameters. These
parameters are remarkably capable of measuring fine properties
of the source, in particular by deciphering precession, without
close bounds to a specific dynamical model.

I. INTRODUCTION

A new kind of astronomy is born with the first advanced
LIGO and advanced Virgo discoveries [2]–[6]. Those gravi-
tational wave detectors allow the observation of astrophysical
systems, such as binary black-holes, that have so far escaped
conventional astronomy based on electromagnetic radiation.
Gravitational waves carry information about the bulk motion
of the emitting system relative to the observer. For instance, the
wave frequency is related to the orbital or spinning period of
the source mass distribution. Gravitational waves are polarized
and the amplitude and phase relationship between the two
polarizations components h+ and h× predicted by general
relativity is related to the source orientation with respect
to the observer. The evolution of the polarization pattern
thus provides evidence for changes in the orientation due to
precession or nutation of the system.

Precession of the binary orbital plane is an important infor-
mation as it indicates that at least one binary component has
a large spin, misaligned with the orbital angular momentum.
In turn, this provides decisive hints on how the binary has
formed. The presence of precession in the detected signal is

classically tested by fitting the data with waveforms obtained
from precessing binary physical models. This procedure does
not test precession effects alone, but rather a full description of
the binary orbital dynamics, which thus includes many other
dynamical effects. In this contribution we propose a different
approach.

Gravitation-wave detectors do not measure the two
gravitational-wave polarizations independently but rather a
linear mixture of them. However observations from two or
more non-coaligned detectors allow to reconstruct the two
gravitational-wave polarizations. We assume that h+ and h×
from a binary merger are reconstructed from LIGO and
Virgo observations, see e.g., [7]. Recently, a new framework
for the frequency analysis of bivariate signals based on a
quaternion Fourier transform has been introduced in [1]. It
allows to analyze the bivariate signal combining h+(t) and
h×(t) by defining its quaternion embedding as well as a set
of non-parametric observables, namely instantaneous Stokes
parameters. Quaternion embedding and time-varying Stokes
parameters are powerful and interpretable mathematical tools
to describe the instantaneous polarization state of bivariate
signals. We propose to infer the presence of precession by
characterizing the evolution of the polarization state from
the reconstructed signals h+(t) and h×(t). Thanks to this
approach we obtain new “non-parametric” observables capable
of finely deciphering the geometrical configuration of the
source, in particular precession, without close bounds to a
specific dynamical model.

Section II introduces a standard gravitational wave model
from precessing binaries. Section III describes instantaneous
polarization features for bivariate signals. The fruitful combi-
nation of these two elements is presented first in Section IV
and is further discussed in Section V with numerical examples.
Section VI gathers concluding remarks.

II. GRAVITATIONAL WAVES FROM PRECESSING SYSTEMS

Following [8], we assume quasi-circular orbits and intro-
duce a set of two frames to model the sensing of gravitational
waves. The modelling of the GW signal from the precessing
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Fig. 1. (a) The relation between precessing and inertial frames is parameterized by Euler angles α, β, γ in the zyz-convention. Spherical coordinates (ι, ϕ0)
denote the position of the observer in the inertial frame. (b) Waveforms of the two polarizations h+ and h× for a strongly precessing binary system formed
by a neutron-star and a 10-solar mass black-hole with misaligned spin s1 = (0.7, 0.7, 0). The binary is face-on and located at a distance of 10 Mpc. (c)
Reconstructed polarizations from simulated LIGO and Virgo observations of the same binary system, see [7] .

binaries is usually done in two steps. First, the computation
of the GW modes is done in the frame P instantaneously
co-precessing with the binary orbital plane. Those modes are
the result of the decomposition of the signal in the spin −2
weighted spherical harmonics. In the second step, the modes
are rotated to the inertial frame I associated with the binary
configuration at some fiducial time (which is usually associ-
ated with the time when the signal enters the observational
band of the detector). This inertial frame is then associated
with the position and orientation of the GW detectors (LIGO,
Virgo).

In the precessing frame attached to the binary, the complex
gravitational wave strain hP = hP+ − ihP× can be decomposed
into spherical harmonics hP`m(t) such that

hP (t; Ω) =

∞∑
`=2

∑̀
m=−`

hP`,m(t)−2Y`,m(Ω) (1)

where Ω is the (time-varying) angle of the observer in the pre-
cessing frame and −2Y`,m are the -2-spin weighted spherical
harmonics.

The key idea of [8] is that the gravitational wave modes in
the precessing frame resemble that of a non-precessing binary.
The dominant modes correspond to (` = 2,m = ±2) and they
can be approximated as

hP2,±2(t) = a0(t)e∓iΦ(t). (2)

While [8] derives explicit expressions for the instantaneous
amplitude a0(t) and phase Φ(t) by resolving the binary orbital
motion, we do not assume here any specific evolution for a0(t)
and Φ(t).

The modes are rotated from the precessing frame P to the
inertial frame labelled with I using the (time-dependent) Euler
angles α, β and γ, see Fig. 1a. This change of frame involves
the following correspondence between spherical harmonics
coefficients of the gravitational waves expressed in each frame:

hI`,m =
∑̀

m′=−`
hP`,m′ D

`,∗
m′m(−γ,−β,−α) (3)

where D`
m′m are the Wigner-D functions [9]. When the binary

does not precess, the frames P and I coincide and α = β =
γ = 0. Since there are only ` = 2 modes in the frame P , only
` = 2 modes will contribute in the frame I . However, all m
modes contribute to the observed signal, which therefore reads

hI(t; ι, ϕ0) =

2∑
m=−2

hI2,m(t)−2Y2,m(ι, ϕ0) (4)

where (ι, ϕ0) are the spherical coordinates of the observer 1.
By combining Eqs (1–4), we can express the two polar-

izations h+ and h× of the incident gravitational wave in the
observation frame as a generic function of the binary orbital

1In the geocentric frame, ι therefore corresponds to the inclination of the
binary orbital plane with the line of sight.



dynamics and the orientation of the binary. For a strongly
precessing binary system composed of a neutron star and a 10
solar-mass black-hole with misaligned spin s1 = (0.7, 0.7, 0),
this results in the waveforms shown in Fig. 1b. Precession
causes changes in the orientation of the binary’s orbital plane
with respect to the line of sight, that leads to the characteristic
amplitude modulations clearly seen on the waveform envelop.
It also leads to less obvious interrelationships between the
“+” and “×” phases that we intend to discriminate with the
mathematical tools introduced in the next section.

III. INSTANTANEOUS POLARIZATION FEATURES

Recently, a new framework based on a tailored Quaternion
Fourier Transform (QFT) has been introduced for the time-
frequency analysis of bivariate signals [1]. It allows to ex-
tend familiar concepts such as Fourier transform and spectral
analysis to the case of bivariate signals. While it is usual
to embed real signals in the space of complex signals, this
approach proposes to consider bivariate signals as complex
valued signals which are embedded in the higher dimensional
space of quaternions. We recall here the concept of quaternion
embedding, which is the bivariate counterpart of the well-
known analytic signal originally introducerd in [10].

We form a bivariate signal by combining the two observed
polarizations in a complex-valued signal h(t) = h+(t) −
ih×(t). The QFT used in [1] takes values in the 4-dimensional
space of quaternions H, i.e. it has a scalar (real) part and
a vectorial part made of 3 imaginary parts carried by the
standard quaternion square roots of −1: i, j and k ; see for
example [11] for a review on quaternions.

The quaternion embedding of a signal h(t), denoted hH(t),
is defined by:

hH(t) = h(t) +H [h(t)] j ∈ H (5)

where H[·] stands for Hilbert transform. The restriction of
the quaternion embedding signal hH(t) to its real and i-
imaginary parts, belonging to span{1, i}, is the original signal
h(t). Note that H [h(t)] ∈ span{1, i} is a complex valued
signal as well. Most importantly, hH(t) and h(t) share the
same spectral content except that the QFT of hH(t) is null at
negative frequencies.

The quaternion nature of hH(t) yields a convenient polar
form expression [1], [12]:

hH(t) = a(t)eiθ(t)e−kχ(t)ejϕ(t), (6)

which looks much alike the usual amplitude-phase decom-
position of real signals, with 2 additional factors (θ(t), χ(t))
accounting for polarization properties. It can be related to
polarized AM-FM signals by restricting the Cartesian form
of hH(t) to its span{1, i} part, leading to:

h(t) = a(t)eiθ(t) (cosχ(t) cosϕ(t) + i sinχ(t) sinϕ(t)) .
(7)

Polarized AM-FM signals are the complex generalization
of the standard AM-FM signals. Expressions (6) and (7)
explicitely exhibit instantaneous waveform attributes a(t) and

ϕ(t) as well as instantaneous geometric attributes θ(t) and
χ(t).

Figure 2 depicts the way those parameters describe the in-
stantaneous shape of the bivariate signal h(t). The parameters
a(t), θ(t) and χ(t) represent the intensity, the orientation and
the ellipticity of the instantaneous polarization ellipse. The
phase ϕ(t) encodes the local oscillatory evolution along this
ellipse. The interpretation of any bivariate signal using the
polarized AM-FM form is subject to conditions similar to
the Bedrosian theorem in the univariate case. Details can be
found in [1] and can be summarized by saying that geometric
instantaneous parameters a(t), θ(t) and χ(t) must have a much
slower rate of change than ϕ(t) for the interpretation to be
valid.

An alternate and powerful way to parametrize the quaternion
embedding signal hH(t) is to consider its associated Stokes
parameters defined as [13]:

S0(t) = a2(t) (8)

S1(t) = a2(t) cos 2θ(t) cos 2χ(t) (9)

S2(t) = a2(t) sin 2θ(t) sin 2χ(t) (10)

S3(t) = a2(t) sin 2χ(t) (11)

in terms of the ellipse parameters (a(t), θ(t), χ(t)) used to
parametrize the quaternion embedding in (6). More precisely,
the Stokes parameters, that are very popular in optics, carry the
polarization information parametrized by θ(t) and χ(t). The
first Stokes parameter S0(t) is purely energetic and gives the
instantaneous power. Normalized Stokes parameters S1/S0,
S2/S0 and S3/S0 describe the instantaneous polarization state
only. Stokes parameters are second-order quantities, making
their estimation numerically less sensitive than ellipse param-
eters θ and χ.

As explained in [1], Stokes parameters associated to a
bivariate signal h(t) can be directly computed from hH(t)
by |hH(t)|2 = S0(t) and hH(t)jh?H(t) = iS3(t) + jS1(t) +
kS2(t), where ‘?’ stands for quaternion conjugation. This
shows that Stokes parameters are related to quadratic quan-
tities in the quaternion embedding. They also have invariance
properties with respect to the QFT [1]. In the sequel, Stokes
parameters associated to a bivariate signal will be used to
extract some of its time-varying properties. Their direct identi-
fication to the imaginary parts of a quadratic quantity derived
from the quaternion embedding makes them good candidates
for non-parametric analysis and estimation as proposed in the
following Sections.

IV. FROM STOKES TO ASTROPHYSICAL PARAMETERS

Instantaneous polarization attributes obtained thanks to the
quaternion embedding method provide a straightforward char-
acterization of polarization evolution for precessing binaries.
As a first example, let us consider the observed signal (4)
obtained for face-on (ι, ϕ0) = (0, 0) binaries, that is when
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Fig. 2. Instantaneous ellipse tangent to the trajectory of the bivariate signal
h(t) = h+(t) − ih×(t). This ellipse is characterized by the polarization
parameters (a(t), θ(t), χ(t)).

the observer is in direction zI . From (4), one gets the simple
expression (time-dependence omitted for conciseness):

hI = ka0e
−2iα

{
(1 + cos2 β) cos Φγ − 2i cosβ sin Φγ

}
(12)

where k > 0 is a constant and Φγ = Φ+2γ. For most cases of
astrophysical relevance the orbital dynamics can be described
by osculating orbits where the precession timescale is much
longer than the orbital timescales. This means that Euler angles
[α(t), β(t), γ(t)] vary much slower than the phase Φ(t). It
thus allows a direct identification of instantaneous polarization
parameters by comparing (12) with (7):

a(t) = ka0(t)
(
1 + cos2 β(t))2 + 4 cos2 β(t)

)1/2
(13)

θ(t) = −2α(t) (14)

χ(t) = − arctan
2 cosβ(t)

1 + cos2 β(t)
(15)

ϕ(t) = Φ(t) + 2γ(t) (16)

Eqs. (13)–(16) highlights the direct relation between standard
descriptors of bivariate signals and GW parameters. In particu-
lar, Eqs. (14) and (15) explicitly show how precessing binaries
generate polarization modulation effects on the observed signal
hI(t). For this face-on case, one observes a nice decoupling
between orientation θ(t) depending only on α(t) and ellipticity
χ(t) depending only on β(t). Note that γ(t) only affects
the phase ϕ(t) and does not produce polarization modulation
effects.

In the general case, i.e. for an arbitrary observer posi-
tion (ι, ϕ0) 6= (0, 0), this approach is no longer so direct
and practical due to the complexity of the expression of
hI(t). Rather, precession and polarization modulation effects
in hI(t) can be easily characterized using instantaneous
Stokes parameters. In particular, normalized Stokes parameters
S1/S0, S2/S0, S3/S0 provide a convenient description of the
instantaneous polarization state of hI(t). Their explicit expres-
sions can still be obtained from the quaternion embedding of

the generic model (4) but they become far too voluminous
to be reproduced here. They provide a direct connection
between precession parameters, Euler angles α, β, and the
instantaneous polarization state of hI(t). Note that γ only
affects the instantaneous phase of hI(t), as for the special
case of face-on binaries.

V. APPLICATIONS AND DISCUSSIONS

We illustrate our findings on simulated gravitational wave-
forms from precessing binaries. Simulations are carried out
using the generic SEOBNRv3 model of a (strongly) precessing
black-hole/neutron star binary [14]. This precessing case is
somehow extreme and is not favoured by current binary
formation models. However it is not excluded and remains
physically possible. Above all, waveforms presented in Fig.
1b serve our illustrative purposes. Fig. 1b depicts the two
polarizations h+(t) and h×(t) of a gravitational wave emitted
by this binary system.

Stokes parameters provide a straightforward diagnosis of
precession. The theoretical relation between normalized Stokes
parameters S1(t)/S0(t), S2(t)/S0(t), S3(t)/S0(t) and Euler
angles can be explicitly derived, see Sec. IV eqs. (14)-(15) for
face-on binaries; this holds in general with more elaborated
formulas when (ι, ϕo) 6= (0, 0). For non-precessing binaries,
Euler angles α(t), β(t), γ(t) are identically zero. In this case,
the instantaneous polarization state of hI(t) is constant since
θ and χ remain constant. As a result, normalized Stokes
parameters remain constant as well, see (8)-(11). Since they
are readily computed from the quaternion embedding of the
observed signal hI(t), they provide a useful and sensitive tool
for the analysis of precession effects.

Fig. 3 shows the instantaneous normalized Stokes param-
eters obtained from the quaternion embedding hH(t) of the
bivariate signal hI(t) = h+(t)− ih×(t) with waveforms pre-
sented in Fig. 1b. These gravitational waveforms correspond to
a strong precessing binary observed face-on (ι, ϕ0) = (0, 0).
The non-parametric estimates of Stokes parameters (thin white
lines) from simulated hI(t) close to perfectly match the
values expected from the explicit physical model involving
Euler angles (thick blue lines): the 2 curves are superposed.
The presence of oscillations indicates that the instantaneous
polarization state of hI(t) is modulated. This polarization
modulation is directly explained by the precession dynamics.
In particular for face-on binaries S3(t)/S0(t) is a function of
the precession angle β(t) only, see Eqs (11) & (15).

Fig. 4 presents the normalized Stokes parameters obtained
for the bivariate signal hI(t) = h+(t) − ih×(t) using re-
constructed polarizations depicted in Fig. 1c. The polarization
reconstruction from LIGO/Virgo observations require solving
an inverse problem. Here, this is performed using sparsity-
promoting regularization techniques (LASSO) presented in
[7]. The reconstructed polarizations are obtained from observa-
tions of the black-hole/neutron-star binary system considered
in Fig. 1c in simulated LIGO/Virgo noise using sensitivity
curves comparable to that of the last O2 science run.
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Stokes parameters are extracted from the ridge of a quater-
nion continuous wavelet transform [1], in order to overcome
the remaining noise in reconstructed polarizations in Fig. 1c.
This noise hinders the direct use of the quaternion embed-
ding method. On the ridge, one approximately recovers the
quaternion embedding of the noiseless signal hI(t), see [1]
for details. The extracted ridge corresponds to the end of
the inspiral (−1.2 s ≤ t ≤ 0) since SNR increases and
becomes large enough as the binary comes close to the merger.
The good agreement between reconstructed normalized Stokes
parameters and their explicit physical model involving Euler
angles (thick blue lines) demonstrate the relevance of use of
Stokes parameters to diagnosis and characterize precession.

VI. CONCLUSION

We have shown that Stokes parameters estimated from the
observed gravitational wave directly connect waveform fea-
tures to dynamical properties of the source. When applied to
the case of coalescing compact binaries, they permit to test the
presence of precession of the orbital plane prior to the merger
(when the binary collapses). Most importantly these new

observables are non parametric and bring robust information
to provide a support to more conventional waveform fitting
procedures based on a comprehensive and detailed model of
the binary dynamics. In some sense, Stokes parameters are
a reparametrization that directly encodes orbital properties of
the source which are very difficult to obtain individually. In
the case of the observation of a simulated simple face-on
binary, with a dominating quadrupolar mode, our results show
a remarkable agreement between theoretical predictions and
numerical estimations. They can be extended to arbitrary bi-
nary orientations and higher-order modes. This approach could
also yield the detailed physical parameters from the Stokes
observables by reverting a system of non-linear equations.
Together with the reconstruction of polarizations described in
[7], it provides a complete procedure to analyze polarization-
related effects in experimental data from LIGO and Virgo
detectors. It has the potential of revealing any dynamical effect
that affects the gravitational-wave polarization pattern, i.e, not
only precession but also e.g., orbital eccentricity.
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