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A complete framework for linear filtering
of bivariate signals
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Abstract—A complete framework for the linear time-invariant
(LTI) filtering theory of bivariate signals is proposed based on a
tailored quaternion Fourier transform. This framework features
a direct description of LTI filters in terms of their eigenproperties
enabling compact calculus and physically interpretable filtering
relations in the frequency domain. The design of filters exhibiting
fundamental properties of polarization optics (birefringence, di-
attenuation) is straightforward. It yields an efficient spectral syn-
thesis method and new insights on Wiener filtering for bivariate
signals with prescribed frequency-dependent polarization prop-
erties. This generic framework facilitates original descriptions
of bivariate signals in two components with specific geometric
or statistical properties. Numerical experiments support our
theoretical analysis and illustrate the relevance of the approach
on synthetic data.

Index Terms—Bivariate signal, Polarization, LTI filter, Quater-
nion Fourier transform, Wiener denoising, Spectral synthesis,
Decomposition of bivariate signals

I. INTRODUCTION

B IVARIATE signals appear in numerous physical areas
such as optics [1], oceanography [2], geophysics [3], [4]

or EEG analysis [5]. A bivariate signal x(t) is usually resolved
into orthogonal components corresponding to real-valued sig-
nals x1(t) and x2(t). Then x(t) can be expressed either in
vector form x(t) = [x1(t) x2(t)]T or as the complex valued
signal x(t) = x1(t) + ix2(t). Benefits of each representation
have been reviewed recently [6].

Linear time-invariant (LTI) filtering theory is a cornerstone
of signal processing. Its extension to the case of bivariate
signals depends on the chosen representation – vector or
complex form. The use of the complex representation x(t) =
x1(t) + ix2(t) leads to the concept of widely linear filtering
[7], [8], [9], [10], [11], meaning that the signal x(t) and its
conjugate x(t) are in general filtered differently. While the use
of the complex representation is often advocated for in the
signal processing literature [10], [12], the use of the vector
form x(t) = [x1(t) x2(t)]T is more common in physical
sciences, e.g. polarization optics [13], [14]. The vector x(t) is
usually replaced by its analytic signal version – the so-called
Jones vector. LTI filters are then represented in the spectral
domain by 2×2 complex matrices called Jones matrices. These
matrices describe optical elements or media with fundamental
optical properties such as birefringence and diattenuation. See
e.g. [15] for a review of the Jones formalism.
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A complete framework for LTI filtering of bivariate signals
should exhibit some desirable properties: (i) a description
of bivariate signals as single algebraic objects for simple
calculations (in contrast with e.g. rotary components [16]),
(ii) a convenient duality between time and frequency to define
easily interpretable Fourier representations, (iii) a simple rep-
resentation of LTI filters in terms of their main properties, such
as eigenvectors and eigenvalues (in contrast with e.g. Jones
matrices or widely linear filters), and (iv) a fast implementa-
tion, e.g. relying on FFT. As noticed, existing approaches do
not fullfill these properties all at once.

This article is the third step of our careful construction of a
global framework for bivariate signal processing. The first step
[17] aimed at introducing the quaternion Fourier transform
(QFT) and its main properties, in particular to build the time-
frequency analysis of bivariate signals on solid grounds. The
second step [18] aimed at studying spectral analysis for bivari-
ate signals in this framework. This article deals with the most
fundamental task of signal processing that is LTI filtering. Our
research program on this subject exploits three main building
blocks: quaternions and the QFT, the physical notion of wave
polarization and its description thanks to Poincaré sphere. The
proposed framework exhibits a unifying structure by directly
connecting usual physical quantities from polarization to well-
defined mathematical (quaternion-valued) quantities such as
spectral densities, covariances, time-frequency representations,
etc. It provides, at no extra cost, an elegant, compact and
insightful calculus which highlights the geometric treatment
of polarization states. Note that first attempts in this direction
root in optics [19], [20], [21], [22], [23] that provide a
clear geometric formulation of Jones formalism. However
its generic use for bivariate signal processing is hindered
by ignoring phase terms, assuming monochromatism1 and
unpractical implementation.

The QFT framework enables an efficient description of LTI
filters and overcomes the limitations of previous approaches by
answering all the desirable requirements mentioned above. In
the proposed representation LTI filters are explicitly given in
the spectral domain in terms of their eigenproperties. Clear and
economical expressions make LTI filters for bivariate signals
easy to interpret or prescribe. They explicitly feature param-
eters related to two fundamental properties of optical media:
birefringence corresponds to phase delays that depend on the
input polarization state; diattenuation describes how the gain
of a filter depends on the input polarization state. For every
frequency these two classes of filters exhibit two orthogonal
eigenpolarizations. These are referred to as the slow and fast

1Monochromatic signals are signals that contain only one frequency.
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axes for birefringence. For diattenuation they correspond to
the minimum and maximum values of the gain of the filter.
This complete framework provides a new interpretable and
generic approach to standard signal processing operations
such as spectral synthesis and Wiener filtering for instance.
Moreover it makes natural various original descriptions of
bivariate signals in two components with specific geometric
or statistical properties.

This paper is organized as follows. In Section II we gather
useful properties of the QFT. Based on a usual decomposition
[15], [14] which separates LTI filters into unitary and Hermi-
tian ones, Section III presents a thorough study of each family
in the QFT domain. Section IV presents practical applications
of those filters: usual ones (spectral synthesis, Wiener filtering)
and original decompositions of bivariate signals into two
components with prescribed properties. Section V gathers
concluding remarks. Detailed calculations are remitted to
appendices. For the sake of reproducibility, an implementation
of the QFT framework along with tools presented in this paper
will be available through the open-source Python companion
toolbox BiSPy2.

II. BACKGROUND

Section II-A and Section II-B present two key ingredients of
this work: quaternions and the quaternion Fourier transform.
Section II-C introduces the quaternion spectral density of a
bivariate signal, a fundamental quantity that allows numerous
physical and geometrical interpretations.

A. Quaternions

Quaternions form a four dimensional algebra denoted H and
with canonical basis {1, i, j,k}, where i, j,k are imaginary
units i2 = j2 = k2 = −1 such that

ij = k, ij = −ji, ijk = −1. (1)

Importantly, as with matrix products, quaternion multiplication
is noncommutative, i.e. in general for p, q ∈ H one has pq 6=
qp. Any quaternion q ∈ H can be written as

q = a+ bi+ cj + dk (2)

where a, b, c, d ∈ R. The scalar or real part of q is S(q) =
a ∈ R and its vector or imaginary part is V(q) = q − S(q) ∈
span {i, j,k}. When S(q) = 0, q is said to be pure. The
quaternion conjugate of q is q = S(q) − V(q). Its modulus
is |q|2 = qq = qq = a2 + b2 + c2 + d2. Involutions with
respect to i, j,k are defined by qi = −iqi, qj = −jqj, qk =
−kqk. Involutions somehow extend the notions of complex
conjugation as they represent reflections, e.g. qi = a + bi −
cj − dk.

Quaternions generalize naturally complex numbers. Con-
cepts such as imaginary units, polar forms extend nicely. For
instance Cj = span {1, j} or Ci = span {1, i} are complex
subfields of H isomorphic to C. As a result, given a pure
unit quaternion µ such that µ2 = −1 and θ ∈ R, one gets
exp(µθ) = cos θ + µ sin θ.

2documentation available at https://bispy.readthedocs.io/

As it is essential to our analysis we mention another
property of quaternions. Any quaternion can be represented
as a pair of complex numbers. Let q = q1 + iq2, q1, q2 ∈ Cj .
The vector representation of q is the 2-dimensional complex
vector q = [q1, q2]T ∈ C2×2

j . For more about quaternions, the
reader is referred to dedicated textbooks e.g. [24].

B. Quaternion Fourier transform

Several Quaternion Fourier transforms have been proposed
so far, see [25] for a review. We briefly survey the Quaternion
Fourier Transform (QFT) first introduced in [26] and further
studied in [17]. Recent works [17], [18] have demonstrated the
relevance of this QFT to process bivariate signals. In particular
the QFT decomposes directly bivariate signals into a sum of
polarized monochromatic signals. It also allows novel, natural
and direct interpretation of polarization features for bivariate
signals.

A bivariate signal written as a Ci-valued signal reads x(t) =
x1(t)+ix2(t), where x1, x2 are real signals. Suppose for now
that x(t) is deterministic. The QFT of x(t) is then

X(ν) ,
∫ +∞

−∞
x(t)e−j2πνtdt = X1(ν) + iX2(ν) ∈ H. (3)

where X1, X2 are the standard Fourier transform (FT) of
x1, x2, taken as Cj-complex valued. The inverse QFT is given
by

x(t) =

∫ +∞

−∞
X(ν)ej2πνtdν. (4)

The QFT (3) is very similar to the usual FT where the axis
i of the FT has simply been replaced by j. Importantly, the
exponential kernel is located on the right, a crucial point due
to the noncommutative nature of the quaternion product. Eq.
(3) shows that a bivariate signal x(t) ∈ Ci has a quaternion-
valued spectral description X(ν) ∈ H. Moreover the QFT of
Ci-valued signals exhibits the i-Hermitian symmetry [26]

X(−ν) = X(ν)
i
. (5)

Eq. (5) illustrates that for bivariate signals negative frequencies
carry no information additional to positive frequencies. In
[17] we demonstrated that it permits to construct a direct
bivariate counterpart of the usual analytic signal by cancel-
ing out negative frequencies of the spectrum. This first tool
called the quaternion embedding of a complex signal allows
identification of both instantaneous phase and polarization
(i.e. geometric) properties of narrow-band bivariate signals.
This approach can be extended to wideband signals using a
polarization spectrogram based on a short-time QFT. See [17]
for details.

For finite energy signals a generalized Parseval-Plancherel
theorem gives yields two invariants:∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|X(ν)|2dν, (6)∫ +∞

−∞
x(t)jx(t)dt =

∫ +∞

−∞
X(ν)jX(ν)dν. (7)

Eq. (6) is classical, energy is conserved. Eq. (7) illustrates
that an additional quadratic quantity of geometric nature is

https://bispy.readthedocs.io/
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conserved. Importantly, the term X(ν)jX(ν) ∈ span{i, j,k}
represents a vector in R3 which can be meaningfully inter-
preted in terms of polarization attributes [18], [17].

C. Quaternion spectral density of bivariate signals

The QFT has two invariants (6) and (7). As a result for
finite energy deterministic signals the quantities |X(ν)|2 and
X(ν)jX(ν) summarize the second-order spectral properties
of the bivariate signal x(t). These quantities can be adequatly
combined to form a quaternion energy spectral density:

Γxx(ν) = |X(ν)|2 +X(ν)jX(ν). (8)

Many signals however are random and only of finite power,
which makes the spectral density definition (8) no longer
applicable. Fortunately thanks to a spectral representation
theorem based on the QFT [18] one can extend the definition
(8) to define a quaternion power spectral density for stationary
random bivariate signals. In short the standard QFT X(ν) is
replaced by the spectral increment dX(ν): see Appendix D for
details. Note however that for ease of notation we will make
the slight abuse of writing X(ν) either when x(t) is random,
keeping in mind the correspondence described in Appendix D.

The quaternion power spectral density (PSD) of a stationary
random signal x(t) reads:

Γxx(ν) = S0,x(ν)︸ ︷︷ ︸
scalar part

+ Φx(ν)S0,x(ν)µx(ν)︸ ︷︷ ︸
vector part

. (9)

The scalar part of Γxx(ν), S0,x(ν) ≥ 0 is standard and
gives the total3 power spectral distribution. The vector part
of Γxx(ν) describes the polarization properties of x at every
frequency. They are summarized by two parameters: the po-
larization axis µx(ν), a pure unit quaternion, describes the po-
larization ellipse at this frequency. The degree of polarization
Φx(ν) ∈ [0, 1] quantifies the balance between polarized and
unpolarized parts at this frequency. When Φx(ν) = 0 (resp.
= 1) the signal is unpolarized (resp. fully polarized) at ν; else
it is partially polarized. As explained in [18] the quaternion
PSD Γxx(ν) can be directly expressed in terms of frequency
dependent Stokes parameters. This set of 4 experimentally
measurable energetic parameters are widely used in optics
for the description of polarization states [15]. The proposed
approach thus permits a meaningful Stokes parameters char-
acterization of generic wideband bivariate signals, see [18].

Figure 1 depicts the Poincaré sphere of polarization states. It
allows a direct geometric interpretation of the vector part of the
quaternion PSD, i.e. of polarization properties. Normalizing
in (9) the vector part of Γxx(ν) by the power distribution
S0,x(ν) gives the pure quaternion Φx(ν)µx(ν). Given any ν
this quaternion identifies a vector of R3. It is represented as
a point on the surface of Poincaré sphere of radius Φx(ν).
This point encoded by the pure unit quaternion µx(ν) gives
the polarization ellipse of the signal at frequency ν. For
instance, µx(ν) = i corresponds to counter-clockwise circular
polarization, while µx(ν) = −j corresponds to vertical linear

3The term “total” refers to the fact that S0,x(ν) contains power contribu-
tions from its unpolarized and polarized parts, see [18].
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Fig. 1. Poincaré sphere of polarization states. The vector part of Γxx(ν)
(9) normalized by S0,x(ν) identifies a vector in R3 which describes the
polarization attributes of x(t) at frequency ν. Spherical coordinates (2θ, 2χ)
gives the orientation θ and ellipticity χ. The radius Φ gives the degree of
polarization. Cartesian coordinates give the normalized Stokes parameters, an
alternative characterization of polarization properties [13].

polarization. Equivalently, µx(ν) can be specified using spher-
ical coordinates (2θ, 2χ), giving respectively the orientation θ
and ellipticity χ of the polarization ellipse; µx(ν) can also
be specified in Cartesian coordinates using normalized Stokes
parameters, see e.g [13] for details. Orthogonal polarizations
correspond to antipodal points on the Poincaré sphere of radius
Φx = 1: e.g. clockwise and counter-clockwise circular are or-
thogonal polarizations. While it may sound disturbing at first,
two axes µx and µy correspond to orthogonal polarizations
in the usual sense when they are anti-aligned 〈µx,µy〉 = −1.

Relation to complex signal processing. The statistical
characterization of stationary random complex signals x(t) =
u(t)+iv(t) has been extensively studied in the signal process-
ing literature: see e.g. [12], [10], [27] and references therein.
Second-order properties of x(t) are fully given by the autoco-
variance Rxx(τ) = E{x(t)x(t− τ)} and pseudo-covariance
function R̃xx(τ) = E {x(t)x(t− τ)}. In the spectral domain
the power spectral density (PSD) Pxx(ν) = FRxx and the
complementary PSD (C-PSD) P̃xx(ν) = FR̃xx encode the
second-order structure of x(t), where F denote the usual com-
plex Fourier transform. Note that the PSD is real nonnegative,
not necessary symmetric Pxx(ν) ≥ 0 and that the C-PSD is
even and complex-valued P̃xx(−ν) = P̃xx(ν) ∈ C.

The quaternion PSD (9) can be expressed in terms of Pxx(ν)
and P̃xx(ν) as (see e.g. [10, p. 213] and [18]):

Γxx(ν) = EvPxx(ν)+iOdPxx(ν)+jReP̃xx(ν)+kImP̃xx(ν)
(10)

where EvPxx(ν) and OdPxx(ν) denote respectively the even
and odd parts of Pxx(ν) and where ReP̃xx(ν) and ImP̃xx(ν)
denote the real and imaginary parts of P̃xx(ν), respectively.

A second-order stationary signal x(t) is said to be proper
or second-order circular if its complementary covariance or
C-PSD vanishes, i.e. if R̃xx(τ) = 0, ∀τ or P̃xx(ν) = 0, ∀ν;
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otherwise x(t) is said to be improper. Proper signals have
quaternion PSD Γxx(ν) = EvPxx(ν)+iOdPxx(ν). Following
our previous discussion, proper signals are thus circularly po-
larized at all frequencies and are in general partially polarized.
This has been already discussed in more detail in [18].

We emphasize that properness and polarization are distinct
concepts and thus shall not be confused. Eq (10) shows that the
quaternion PSD Γxx(ν) defined in (9) embodies the complete
second-order statistical structure of x usually given by the pair
(Pxx(ν), P̃xx(ν)). However unlike the PSD and C-PSD, the
quaternion PSD Γxx provides a natural parameterization in
terms of polarization features. This geometric characterization
of the spectral properties of bivariate signals is granted by the
QFT framework. It permits efficient and interpretable design
of LTI filters in terms of meaningful physical parameters, see
Section III.

III. LTI FILTERING FOR BIVARIATE SIGNALS

The purpose of this section is to write a complete and clean
formulation of the theory of linear-time invariant (LTI) filtering
for bivariate signals within the QFT framework.

LTI filters can be classified into two categories: unitary
filters and Hermitian filters. This decomposition originates
from optics, where one usually separates birefringence effects
(unitary) from diattenuation or dichroism effects (Hermitian)
[15], [14]. It is often implicitly assumed that one operates at a
single frequency. In contrast we provide frequency-dependent
expressions for unitary and Hermitian filters to deal with
generic wideband bivariate signals. It must be pointed out
that in general, in the time-domain there is no simple form
involving a convolution for these filters.

The quaternion representation offers a direct description
of these filters in terms of birefringence and diattenuation
parameters. Precisely, the use of quaternion algebra allows to
write unitary and Hermitian filters in terms of eigenvectors
and eigenvalues of their matrix representation. It explicitely
uses the eigenpolarizations of the filter, giving a natural way
to identify the parameters of each filter.

Section III-A recalls that any LTI filter can be decomposed,
at each frequency, into the combination of a unitary and
a Hermitian transform. Lemmas 1 and 2 give quaternion
representations of such transforms. Section III-B and III-C
study unitary filters and Hermitian filters, respectively. We
emphasize physical and geometric interpretations of these two
filters. See Appendix A for technical details.

A. Matrix and quaternion representation

In the following, time-domain (resp. frequency-domain)
quantities are given in lowercase letters (resp. uppercase).
Scalar quantities (in general, quaternion-valued) are denoted
by standard case letters x,X . Vectors are denoted by bold
straight letters x,X and matrices are written as bold straight
underlined letters m, M. Vector and matrices are always
complex Cj-valued.

A generic LTI filter is described by its matrix impulse
response m(t) ∈ C2×2

j or by its Fourier Transform (FT)

M(ν) ∈ C2×2
j . In the frequency domain the filtering relation

between bivariate signals x and y reads:

Y(ν) = M(ν)X(ν). (11)

For each ν, Eq (11) defines a linear relation between vectors
Y(ν) and X(ν). For the rest of this section we fix ν and drop
now this dependence. The polar decomposition [28] of M is

M = UH, (12)

where U is unitary and H is Hermitian semi-definite pos-
itive, i.e. H∗ = H and its eigenvalues are nonnegative.
Geometrically (12) decomposes M as a stretch (Hermitian
matrix H) followed by a rotation (unitary matrix U). The
polar decomposition (12) suggests to study separately two
fundamental transforms, respectively unitary and Hermitian
ones. Remarkably these two transforms have a direct interpre-
tation in the quaternion representation. In particular parameters
are directly related to eigenvectors and eigenvalues of each
transform.

Recall the equivalence between vector and quaternion rep-
resentations:

X = [X1, X2]T ∈ C2
j ←→ X = X1+iX2 ∈ H, X1, X2 ∈ Cj .

(13)
Lemma 1 gives the representation of unitary transforms in the
quaternion domain.

Lemma 1 (Unitary transform). Let U ∈ C2×2
j , be a unitary

matrix, i.e. such that UU∗ = U∗U = I2, where I2 is the
identity matrix in C2×2

j . Then

Y = UX⇐⇒ Y = eµ
β
2Xejϕ (14)

where µ2 = −1, and β, ϕ ∈ [0, 2π).

The proof is given in Appendix A-B. The parameter ϕ
is the argument of detU. When ϕ = 0 the unitary matrix
U has unit determinant and (14) highlights the well known
[29] quaternion representation of special unitary matrices. The
parameter µ gives the eigenvectors of U, while β encodes its
eigenvalues, see Appendix A-B.

Lemma 2 gives the representation of Hermitian transforms
in the quaternion domain.

Lemma 2 (Hermitian transform). Let H ∈ C2×2
j be Hermitian

positive semi-definite. Then

Y = HX⇐⇒ Y = K[X − ηµXj] (15)

where µ2 = −1, K ∈ R+ and η ∈ [0, 1].

The proof is given in Appendix A-C. The parameter µ
encodes the eigenvectors of H. Parameters K and η depend
on, respectively, the sum and difference of eigenvalues, see
Appendix A-C.

The quaternion representation allows a direct interpretation
and control of each transform parameters. More importantly
these key results enable efficient design of unitary and Her-
mitian filters, see Sections III-B and III-C below.
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B. Unitary filters

A unitary filter performs a unitary transform for each
frequency. Such filter only modifies the polarization axis of the
input signal: the total PSD and degree of polarization are not
affected. It is defined by three frequency-dependent quantities:
a birefringence axis µ(ν), a birefringence angle β(ν) and
phase ϕ(ν). The parameter ϕ(ν) is classical and quantifies
the time delay associated to each frequency. Quantities µ(ν)
and β(ν) model birefringence [14], [15]. This phenomenon is
of fundamental importance in many areas e.g. for modeling
polarization mode dispersion in optical fibers [30], [31] or
shear wave splitting in seismology [32], [33].

Proposition 1 gives the unitary filtering relation for bivariate
signals. Relations between corresponding quaternion PSDs are
given below, which permit further physical and geometric
interpretations.

Proposition 1 (Unitary filter). Let x and y be Ci-valued
bivariate signals with respective quaternion-valued QFTs X
and Y , corresponding to the input and output of the unitary
filter, respectively. The filtering relation is

Y (ν) = eµ(ν)
β(ν)

2 X(ν)ejϕ(ν), (16)

with µ(−ν) = µ(ν)
i
, β(−ν) = β(ν) and ϕ(−ν) = −ϕ(ν).

The quaternion PSD of y is

Γyy(ν) = eµ(ν)
β(ν)

2 Γxx(ν)e−µ(ν)
β(ν)

2 (17)

Sketch of proof. Eq. (16) is obtained directly from Lemma 1.
To obtain (17) use the correspondence described in Appendix
D. Plugging (16) into the quaternion PSD definition (73) yields
(17).

Symmetry conditions in (16) ensure that the i-Hermitian
symmetry (5) is satisfied for Y (ν) so that the output y(t)
remains Ci-valued for an Ci-valued input x(t). Using (10), it
would be possible by developing (17) to give the equivalent
widely linear filtering relation between usual PSD and C-PSD.
However, this relation would not be as straightforward and
interpretable as (17).

Plugging (9) into (17) yields

Γyy(ν) = eµ(ν)
β(ν)

2 S0,x(ν)[1 + Φx(ν)µx(ν)]e−µ(ν)
β(ν)

2

= S0,x(ν) + Φx(ν)eµ(ν)
β(ν)

2 µx(ν)e−µ(ν)
β(ν)

2 .
(18)

Eqs. (17)–(18) show that the unitary filter performs a geomet-
ric operation: a 3D rotation of the quaternion PSD Γxx(ν).
Birefringence affects the output polarization axis µy(ν), which
is given by the rotation of the input polarization axis µx(ν).
Birefringence axis µ(ν) and angle β(ν) define this rotation.
This geometrical operation can be visualized on the Poincaré
sphere in Fig. 1. Eq. (18) highlights that the total PSD and de-
gree of polarization are rotation invariant: S0,y(ν) = S0,x(ν)
and Φy(ν) = Φx(ν). The output polarization axis µy(ν) is
given by the rotation of angle β(ν) of µx(ν) around the axis
µ(ν).

Eigenpolarizations. At a given ν, unitary filters have two
orthogonal eigenpolarizations. These are fully polarized spec-
tral components Z±(ν) with polarization axis is µz±(ν) =
±µ(ν). As as result one gets

eµ(ν)
β(ν)

2 Z±(ν)ejϕ(ν) = Z±(ν)ej(ϕ(ν)±β(ν)/2). (19)

Eq. (19) is another illustration of birefringence. It shows
that unitary filters introduce a phase difference β(ν) between
the fast eigenpolarization Z+(ν) and slow eigenpolarization
Z−(ν).

Eigenpolarizations properties (19) give a simple way to
identify the parameters of the filter. The approach is analogous
to what is done in experimental optics [14]. Working with
monochromatic signals of increasing frequency, one can adjust
the input polarization axis such that the output polarization
axis is the same. It gives immediatly the birefringence axis
µ(ν). Measuring phase delays with respect to fast and slow
eigenpolarizations then permits using (19) to identify birefrin-
gence angle β(ν) and phase ϕ(ν).

C. Hermitian filters

A Hermitian filter performs a Hermitian transform at each
frequency. This second type of filter acts on both power and
polarization properties of the input signal. Three frequency-
dependent quantities are necessary to define a Hermitian filter:
the homogeneous gain K(ν) ≥ 0 and two quantities related to
diattenuation: the polarizing power η(ν) and the diattenuation
axis µ(ν). When η(ν) = 0, K(ν) has a classical interpretation
as the gain of the filter. When η(ν) 6= 0 the gain of the filter
depends on the projection of the polarization axis µx(ν) onto
the diattenuation axis µ(ν). In particular eigenpolarizations,
which are spectral components with polarization axis ±µ(ν)
correspond to maximum and minimum gain values.

Proposition 2 gives the Hermitian filtering relation for bi-
variate signals. Relations between input and output quaternion
PSDs are presented. The use of (9) yields an explicit rewriting
of Γyy(ν) in terms of input polarization properties.

Proposition 2 (Hermitian filter). Let x and y be Ci-valued
bivariate signals with respective quaternion-valued QFTs X
and Y , corresponding to the input and output of the Hermitian
filter, respectively. The filtering relation is

Y (ν) = K(ν)[X(ν)− η(ν)µ(ν)X(ν)j] (20)

with K(−ν) = K(ν), η(−ν) = η(ν) and µ(−ν) = µ(ν)∗i.
Using (9), the quaternion PSD of y is then given by (dropping
ν dependence for convenience)

S (Γyy) = S0,xK
2
[
1 + η2 + 2ηΦx 〈µ,µx〉

]
(21)

V (Γyy) = S0,xK
2
[
2ηµ+ Φx[µx − η2µµxµ]

]
(22)

where 〈µ1,µ2〉 = S(µ1µ2) is the usual inner product of R3.

Sketch of proof. Eq. (20) is obtained directly from Lemma
2. To obtain (21)-(22) use the correspondence described in
Appendix D. Plugging (20) into the quaternion PSD definition
(73) with the use of (9) yields (21)-(22).



6

Symmetry conditions in (20) ensure that the i-Hermitian
symmetry (5) is satisfied for Y (ν) so that y(t) remains Ci-
valued for a Ci-valued input x(t). As with unitary filters, the
equivalent widely linear relation involving the usual PSD and
C-PSD could be derived by developing (21)-(22) and using
(10). The resulting relation would not be as economical and
directly interpretable as (21)-(22) which are provided by the
QFT framework. In the sequel, we work at a fixed frequency ν
and drop explicit dependence in ν to avoid notational clutter.

Gain. The power gain G of the filter is defined by

G =
S (Γyy)

S (Γxx)
=
S0,y

S0,x
(23)

Using Eq. (21) this gain becomes

G = K2
[
1 + η2 + 2η Φx 〈µ,µx〉

]
. (24)

When η = 0 the power gain reduces to its usual expression
G = K2. When η 6= 0, the gain depends on K and η but most
importantly, on the alignment 〈µ,µx〉 between diattenuation
and input polarization axes.

Eigenpolarizations. Hermitian filters have two orthogonal
eigenpolarizations. These are fully polarized spectral compo-
nents Z± with polarization axis µz± = ±µ. From (20) one
has

K[Z± − ηµZ±j] = K[1± η]Z±. (25)

Eq. (25) characterizes diattenuation [14], [15]. Orthogonal
eigenpolarizations have different gains; the polarizing power
η controls the gap between respective gain values.

As with the unitary filter, eigenpolarization properties (25)
give a natural way to identify filter parameters. Note first
that eigenpolarizations correspond directly to maximum and
minimum values of the gain G (24). Thus, finding the maxi-
mum and minimum value of the gain by changing the input
polarization allows to identify directly parameters K, η and µ.
Let Gmax and Gmin denote the maximal/minimal gain values,
one has

2η

1 + η2
=
Gmax −Gmin

Gmax +Gmin
and K2 =

Gmax −Gmin

4η
. (26)

Repeating the operation for a wide range of frequencies
completes the characterization procedure.

Identification using unpolarized WGN. The quaternion
PSD of the response of the Hermitian filter to an unpolarized
white Gaussian noise (WGN) input provides a simple and
practical way to identify its parameters. The input unpolarized
WGN noise w(t) has constant quaternion PSD Γww(ν) =
σ2

0 ≥ 0, with σ2
0 the noise variance. It is unpolarized for

every frequency since Φw(ν) = 0. Then the output y(t) has
quaternion PSD

Γyy(ν) = σ2
0K

2(ν)[1 + η2(ν) + 2η(ν)µ(ν)]. (27)

Filter parameters η(ν) and µ(ν) completely define the output
polarization state. Identifying (9) for Γyy with (27) yields the
filter parameters:

η(ν) =
1−

√
1− Φ2

y(ν)

Φy(ν)
(Φy(ν) 6= 0)

K2(ν) =
S0,y(ν)

σ2
0(1 + η2(ν))

µ(ν) = µy(ν)

(28)

and η(ν) = 0 when Φy(ν) = 0.
This result is fundamental. In the bivariate case, unpolarized

WGN plays the role of WGN in the univariate case. It permits
a direct identification of the parameters of the Hermitian
filter. Moreover any stationary Gaussian bivariate signal with
arbitrary quaternion PSD Γyy can be obtained as a Hermitian
filtered version of unpolarized WGN. Section IV-A exploits
the latter property to simulate stationary bivariate signals via
spectral synthesis.

Examples. Hermitian filters are characterized by non-trivial
interactions between input polarization properties and filter pa-
rameters. Two particular cases illustrate how far the proposed
approach is rich and interpretable. Frequency dependence is
omitted in what follows.

Null polarizing power η = 0. One has Y = KX and Γyy =
K2Γxx. The output is a purely amplified/attenuated version of
the input signal. Polarization properties are not modified.

Maximal polarizing power η = 1. The Hermitian filter is
called a polarizer since the output polarization properties do
not depend on the input polarization properties. Geometrically,
starting from (22) the term µx − µµxµ corresponds to the
projection of µx onto µ, up to a factor 2: the filter performs
a projection onto the diattenuation axis µ. The output polar-
ization axis is µy = µ; the output is totally polarized Φy = 1.
The gain G quantifies how ‘close’ µx is to µ:

G = 2S0,xK
2[1 + Φx 〈µx,µ〉] (29)

In particular, for eigenpolarizations Z±:

Y+ = 2KZ+ and Y− = 0 (30)

meaning that when the input polarization axis is µx = −µ
(orthogonal polarization) and totally polarized, the output
cancels out. It illustrates how the alignment between input
polarization and diattenuation axes affects the gain of the filter.

IV. APPLICATIONS

A. Spectral synthesis

We propose a new simulation method for Gaussian sta-
tionary random bivariate signals based on the filtering of a
bivariate WGN. Eq. (27) shows that any stationary Gaussian
bivariate signal with arbitrary spectral density can be obtained
by Hermitian filtering of unpolarized WGN. This result allows
to generalize a well-known approximate simulation algorithm
[34] to the case of bivariate random signals. We note that an
exact simulation method for bivariate signals with prescribed
spectral density has been recently proposed in [35] using a
circulant embedding approach.
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Spectral synthesis of random bivariate signals
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Fig. 2. Numerical simulations illustrating the novel tools introduced in this paper. a Partially elliptically polarized narrow-band signal obtained using the
spectral synthesis method of Sec. IV-A. This reference signal is used in all subsequent simulations. b Power spectral distribution and parameters used in a.
c Reference signal in partially (Φw = 0.4) vertically polarized WGN with SNR = −5 dB. d Output of the Wiener denoising filter described in Sec. IV-B.
Dashed lines indicate the original signal of Fig. 2a.

Let Γ0(ν) = S0(ν)[1 + Φ0(ν)µ0(ν)] denote the quaternion
PSD of the target signal to sample from. Let w(t) be an
unpolarized WGN: its quaternion PSD is constant Γww(ν) =
σ2

0 ∈ R+. Let x(t) be the result of Hermitian filtering of w(t).
Adapting notations from (27) one gets

Γxx(ν) = σ2
0K

2(ν)[1 + η2(ν)]

[
1 +

2η(ν)

1 + η2(ν)
µ(ν)

]
. (31)

Remark that (31) is of the form (9). Identifying filter parame-
ters to match the target quaternion PSD Γ0(ν) yields the same
expressions as in (28).

In practice one wants to generate a discrete, N -length
realization of the signal x(t). One starts by generating an i.i.d.
unpolarized WGN sequence of length M ≥ N (see Appendix
C). Filtering this sequence thanks to discrete implementation
of (20) and keeping the first N samples gives a discretized
realization of the signal x(t). As in the univariate setting
[34], the quality of the simulation is increasing with M .
Since the numerical implementation of the QFT involve only 2
standard FFTs (see Eq. (3)), the overall simulation procedure
is computationally fast with O(M logM) operations.

Figure 2a depicts a realization of a narrow-band stationary
random bivariate signal with constant polarization properties.
The simulation is of length N = 1024 and was obtained using
a M = 10N length unpolarized WGN sequence. The signal is
partially polarized Φx = 0.7 and exhibits elliptical polarization
axis. The power is distributed in a Gaussian-shaped fashion
around normalized frequency ν0 = 0.02, see Figure 2b for
details. Note that the instantaneous polarization state evolves
with time. This is a feature of partial polarization for quasi-
monochromatic signals with constant polarization axis.

B. Wiener denoising

Wiener filtering is an ubiquitous tool in signal processing.
We show that the Wiener filter for bivariate signals has a
convenient quaternion representation. It allows meaningful
physical interpretations and a direct parametrization in terms
of polarization parameters. We restrict our analysis to the
denoising case. Our goal is to estimate a signal of interest
x(t) from which we have measurements y(t) of the form

y(t) = x(t) + w(t) (32)

where w(t) is bivariate noise, independent from x(t). All
signals are assumed to be zero-mean, second-order stationary
with known spectral densities. The Wiener filter solves the
minimum-mean-square-error (MMSE) problem

min E
{
|x̂(t)− x(t)|2

}
(33)

where x̂(t) is obtained by linear filtering of y(t). Intuitively
when searching for a polarized deterministic signal x(t) in
unpolarized noise w(t), the Wiener filter should behave like
a polarizer. It means that every spectral component of y is
projected along the polarization axis µx(ν). Fortunately, this
intuition is proven right by the generic expression of the
Wiener filter.

Frequency dependence is omitted for convenience. The
Wiener denoising filter is a Hermitian filter (see Appendix
B for calculations):

X̂ =
S0,x (1− ΦxΦy 〈µx,µy〉)

S0,y[1− Φ2
y]

[
Y − Φxµx − Φyµy

1− ΦxΦy 〈µx,µy〉
Y j

]
.

(34)
Compared to (60) , Eq. (34) explicitly gives the Wiener denois-
ing filter in terms of polarization features of the signal x and
measurement y. Quantities K(ν),µ(ν), η(ν) of Proposition 2
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can be readily identified from (34). Note the use of the explicit
form (9) of Γyy(ν) = Γxx(ν) + Γww(ν) to simplify notations.

In many situations the noise w(t) can be assumed unpolar-
ized for every frequency. Then Γww(ν) = σ2(ν) ∈ R+ and

Γyy(ν) = S0,x(ν) + σ2(ν)︸ ︷︷ ︸
S0,y(ν)

+S0,x(ν)Φx(ν)µx(ν)︸ ︷︷ ︸
S0,y(ν)Φy(ν)µy(ν)

(35)

The polarization axis is not affected by the noise: µy(ν) =
µx(ν) for all ν. We introduce α = S0,x/σ

2, the frequency-
domain signal-to-noise ratio (SNR). The degree of polarization
is Φy(ν) = α(ν)Φx(ν)/(1+α(ν)). The Wiener filter (34) then
simplifies to

X̂ =
α+ α2[1− Φ2

x]

1 + 2α+ α2[1− Φ2
x]

[
Y − Φx

1 + α[1− Φ2
x]
µxY j

]
.

(36)
The diattenuation axis of the filter is the polarization axis of
the target µx. Homogeneous gain and polarizing power depend
on the target degree of polarization Φx and frequency-domain
SNR α. In particular, when x is deterministic (hence totally
polarized at all frequencies) then the Wiener filter reduces to

X̂(ν) =
S0,x(ν)

2S0,x(ν) + σ2(ν)
[Y (ν)− µx(ν)Y (ν)j] . (37)

Eq. (37) defines a polarizer and validates our initial intuition.
Each spectral component of y is projected along the polariza-
tion axis µx(ν).

The MMSE is εopt = E
{
|x̂(t)− x(t)|2

}
with x̂(t) given

by (34). The MMSE can be rewritten as a frequency domain
integral (see Appendix B)

εopt =

∫ ∞
−∞

εopt(ν)dν (38)

where εopt(ν) is:

εopt(ν) = S0,x

(
1− S0,x

S0,y

1 + Φ2
x − 2ΦxΦy 〈µx,µy〉

1− Φ2
y

)
(39)

= S0,x
1− Φ2

w + α[1− Φ2
x]

1− Φ2
w + α2[1− Φ2

x] + 2α[1− ΦxΦw 〈µx,µw〉]
.

(40)

Eqs (39)-(40) illustrate the dependence of the optimal error in
terms of polarization properties of the signal x, observation
y or noise w. Fixing all parameters except 〈µx,µw〉 in (40),
the optimal error is minimum when signal and noise exhibit
orthogonal polarizations, i.e. when their polarization axes are
anti-aligned 〈µx,µw〉 = −1. The error is maximum when
signal and noise have same polarization 〈µx,µw〉 = 1. Given
α, asymmetry between minimum and maximum values is
accentuated for strongly polarized signal and noise (Φx,Φw '
1). For α � 1 (40) becomes εopt(ν) ' S0,x(ν)/α(ν), while
for α� 1 one gets εopt(ν) ' S0,x(ν), as expected.

We conclude by a numerical example of Wiener filter
denoising. The signal x(t) is taken as the synthetized signal
of Fig. 2a. It is a partially elliptically polarized narrow-
band signal. Spectral density parameters are given in Fig
2b. Measurements y(t) are obtained using (32) with w(t)
a partially vertically polarized WGN, see Appendix C for

details. Its quaternion PSD is Γww(ν) = σ2(1− 0.4j). Noise
variance is adjusted so that SNR = −5 dB.

Figure 2c depicts the measurements y(t). Clearly, noise
level is larger on the vertical axis on account of the
partial vertical polarization of w(t). Figure 2d shows the
output of the Wiener filter. The reconstruction SNR is
10 log10(‖x(t)‖22/‖x̂(t) − x(t)‖22) = 9.92 dB, where ‖ · ‖2
is the standard 2-norm. It illustrates the good performances in
recovering the original signal x(t).

C. Some decompositions of stationary bivariate signals

It is known [18], [13] that the spectral density of a bivariate
signal x(t) can be uniquely decomposed as the sum of
unpolarized and totally polarized spectral densities:

Γxx(ν) = [1− Φx(ν)]S0,x(ν) + Φx(ν)S0,x(ν)[1 + µx(ν)]

= ΓUxx(ν) + ΓPxx(ν), (41)

where superscripts U and P stand respectively for unpolarized
and polarized parts. The decomposition (41) motivates the
search for decompositions of the bivariate signal x(t) into two
parts xa(t) and xb(t) such that

x(t) = xa(t) + xb(t). (42)

Comparing (42) with (41), we search a linear filter such that
xa(t) is fully polarized along µx(ν) for every frequency. Ad-
ditionaly the two parts should satisfy: (i) xa(t) has quaternion
PSD ΓPxx(ν); (ii) xb(t) is unpolarized for every frequency, with
quaternion PSD ΓUxx(ν); (iii) xa(t) and xb(t) are uncorrelated.
Unfortunately no such linear filter exists. Each requirement
corresponds to a distinct filter: only one requirement at a time
can be met.

Since unitary filters do not affect the degree of polarization
or are not able to decorrelate two signals, it is necessary to use
a Hermitian filter. Moreover since we search for xa(t) fully
polarized along µx(ν), one has to use a polarizer along the
polarization axis of x(t):

Xa(ν) = K(ν) (X(ν)− µx(ν)X(ν)j) , (43)
Xb(ν) = X(ν)−Xa(ν)

= (1−K(ν))

(
X(ν) +

K(ν)

1−K(ν)
µx(ν)X(ν)j

)
.

(44)

The second component xb(t) is such that (42) holds. Note
that in (43)-(44) the gain K(ν) is not fixed. Requirements (i),
(ii) or (iii) correspond to distinct values of this gain. Stated
differently, K(ν) rules the nature of the decomposition (42).

Table I summarizes expressions of the gain and quaternion
PSDs of xa(t) and xb(t) for requirements (i), (ii) and (iii).
In addition correlation properties of the two components are
given. To meet (i) the gain K(ν) is adjusted thanks to (21) such
that Γxa,xa(ν) = ΓPxx(ν). However xb(t) is partially polarized
and components are correlated. For (ii) starting from (44) and
using (22) with µ(ν) = −µx(ν) one computes the vector part
of Γxb,xb(ν). Then the gain K(ν) is obtained by imposing
Φb(ν) = 0 for every ν. Fortunately the corresponding expres-
sion for K(ν) yields Γxb,xb(ν) = ΓUxx(ν). The first component
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TABLE I
DIFFERENT DECOMPOSITIONS OBTAINED BY CHANGING THE HOMOGENEOUS GAIN K(ν).

K(ν) Γxa,xa (ν) Γxb,xb (ν) correlation

(i)

√
Φx(ν)

2(1 + Φx(ν))
S0,x(ν)Φx(ν)[1 + µx(ν)] κ(ν)S0,x(ν) [1 − Φ(ν)µx(ν)]

with κ(ν) = (1 + Φx(ν) − 2(Φx(ν) + 1)K(ν))

Φ(ν) =
1 − 2Φx(ν) + 2[Φx(ν) + 1]K(ν)

1 + Φx(ν) − 2[Φx(ν) + 1]K(ν)

correlated

(ii) 1 −
Φx(ν)

Φx(ν) + 1 −
√

1 − Φx(ν)2
2S0,x(ν)K2(ν)[1 + Φx(ν)][1 + µx(ν)] S0,x(ν)[1 − Φx(ν)] correlated

(iii)
1

2

S0,x(ν)

2
[1 + Φx(ν)][1 + µx(ν)]

S0,x(ν)

2
[1 − Φx(ν)][1 − µx(ν)] uncorrelated

xa(t) is fully polarized like x(t), but has weaker intensity
than that of ΓPxx(ν). Components are also correlated. Finally
(iii) is fulfilled by enforcing decorrelation between xa(t) and
xb(t). See Appendix D for technical details. Importantly xa(t)
and xb(t) are both fully polarized with orthogonal polarization
axes. Respective intensities are controlled by the degree of
polarization Φx(ν). Fig. 3 illustrates decompositions (ii) and
(iii) on the synthetized signal of Fig. 2a. Decomposition (i)
is not presented as it is similar to (iii), excepted that xb(t) is
only (strongly) partially polarized.

Taking another polarization axis in (43)-(44) will not enable
satisfying requirements (i)-(ii)-(iii). Indeed the filter corre-
sponding to (ii) and defined in Table I is the unique depolarizer
of x(t), i.e. the only filter that outputs an unpolarized signal
from a partially polarized input (Φx < 1). Moreover the unique
linear filter producing decorrelated signals for xa(t) and xb(t)
is the one defined by (iii) in Table I.

This discussion answers an important and natural question.
Since the decomposition (41) holds, is it possible to decom-
pose by linear filtering any bivariate signal into uncorrelated
unpolarized and polarized components? Unfortunately the
answer is negative. However, this hypothetical decomposition
can still be used as a synthesis tool, as already shown [18].
Moreover in practical situations where such a decomposition
may be needed, one can choose the appropriate filter according
to the desired requirement (i), (ii) or (iii).

V. CONCLUSION

This paper provides a complete and powerful framework
for linear time-invariant filtering of bivariate signals. The
proposed framework yields a direct description of filtering
in terms of physical quantities borrowed from polarization
optics. Our formalism reveals the specifity of bivariate signals
and is crucial to the physical understanding of even basic
operations such as linear filtering. The natural expression of
each filter directly in terms of eigenproperties and relevant
physical parameters simplifies modeling, design, calculations
and interpretations. By studying in detail the two types of
filters called unitary and Hermitian filters, we have also
been able to give strong physical interpretations in terms of
birefringence or diattenuation effects.

We have emphasized the relevance of our work on three
fundamental applications of signal processing. A spectral

synthesis method to simulate any Gaussian stationary ran-
dom bivariate signal with desired spectral and polarization
properties has been presented. It has been shown that the
Wiener denoising problem can be efficiently designed in the
quaternion domain, leading to new interpretations for the
bivariate case. Original decompositions of bivariate signals
into two parts with specific properties have been studied. Our
approach paves the way to further developments in estimation,
simulation and modelling of bivariate signals. The approach is
numerically efficient and relies on the use of FFT. An open-
source implementation of the presented framework will be
soon available in the Python companion package BiSPy4.

APPENDIX A
LINEAR ALGEBRA AND QUATERNION EQUIVALENCE

A. Matrix-vector and quaternion operations

Eq. (13) shows that quaternions can be represented as
complex Cj-vectors. Let X = [X1, X2]T and Y = [Y1, Y2]T

complex Cj-vectors corresponding to quaternions X and Y .
Let M denote an arbitrary complex 2-by-2 matrix. The matrix-
vector relation Y = MX describes an arbitrary linear trans-
form of C2

j .
To obtain the corresponding relation between quaternions

Y and X , write explicitly the matrix-vector relation(
Y1

Y2

)
=

(
a b
c d

)(
X1

X2

)
=

(
aX1 + bX2

cX1 + dX2

)
(45)

where a, b, c, d ∈ Cj . Using (13) and that for any q = q1 +
iq2 ∈ H, q1, q2 ∈ Cj one has q1 = (q + qj)/2 and iq2 =
(q − qj)/2:

Y = Y1 + iY2 = aX1 + bX2 + i (cX1 + dX2)

=
1

2
(a− bi+ ic− idi)X

− 1

2
(a+ bi+ ic+ idi) jXj. (46)

Eq. (46) is the quaternion domain representation of a generic
linear transform of vectors of C2

j .

4Documentation available at https://bispy.readthedocs.io/

https://bispy.readthedocs.io/
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Fig. 3. Decompositions (ii) and (iii) of the bivariate signal of Fig. 2a. See Table I for expressions. a polarized part and b unpolarized part of decomposition
(ii). Components are correlated. c and d: uncorrelated, orthogonal polarized parts of the original signal obtained thanks to decomposition (iii).

B. Unitary transforms

Consider U(2) = {U ∈ C2×2
j s.t. UU∗ = U∗U = I2}

the set of unitary matrices of C2×2
j and denote by the subset

of unitary matrices with unit determinant as SU(2) = {U ∈
U(2) s.t. detU = 1}. Remark that any U ∈ U(2) can be
written as U = Ũdet(U) where Ũ ∈ SU(2) and detU =
exp(jϕ) ∈ Cj .

Using notations from (45), the matrix Ũ is characterized by
d = a, c = −b and |a|2 + |b|2 = 1. Thus (46) simplifies as

Y = (a− bi)X = exp(µβ)X. (47)

Since |a|2 + |b|2 = 1, a− bi is a unit quaternion which can be
reparameterized in polar form by its axis µ and angle β such
that

µ =
−iRe b+ jImja+ kImjb

| − iRe b+ jImja+ kImjb|
, (48)

β = arccos Re a (49)

Back to U ∈ U(2), remark that

Y = UX = Ũ

[
X1e

jϕ

X2e
jϕ

]
, (50)

so that replacing X by the quaternion Xejϕ in (47) yields,

For U ∈ U(2), Y = UX⇐⇒ Y = eµθXejϕ. (51)

C. Hermitian transforms

Let H be Hermitian, i.e. such that H† = H. Using notations
from (45) one has a, d ∈ R and c = −b ∈ Cj . Positive
semidefiniteness is given by Sylvester Criterion: a ≥ 0 ad−
|b|2 ≥ 0, which also implies that d ≥ 0. Eq. (46) becomes

Y =
1

2
(a+ d)X − 1

2
(2bk + (a− d)j)Xj (52)

which can be reparameterized such as

K =
a+ d

2
∈ R+ (53)

µ =
(a− d)j + 2bk

[(a− d)2 + 4|b|2]
1/2

, µ2 = −1 (54)

η =

[
(a− d)2 + 4|b|2

]1/2
a+ d

∈ [0, 1] (55)

Respective domains of K,µ, η ensure that the change of
variable defines a valid one-to-one mapping. Finally, the input-
output relation reads

Y = K (X − ηµXj) . (56)

Parameters K and η can be expressed in terms of eigenvalues
λ1, λ2 (λ1 ≥ λ2 ≥ 0) of the matrix M:

K =
λ1 + λ2

2
η =

λ1 − λ2

λ1 + λ2
. (57)

APPENDIX B
WIENER FILTER DERIVATION

We keep notations from Section IV-B. Let y(t), x̂(t),x(t)
denote vector representations of Ci-valued bivariate signals
y(t), x̂(t) and x(t). Remark that (33) is equivalent to its vector
form:

min E
{
‖x̂(t)− x(t)‖2

}
, (58)

where ‖ · ‖ is the Euclidean norm of C2
j . The solution to (58)

in the Fourier domain is well known [10]

X̂(ν) = Pxy(ν)P−1
yy (ν)Y(ν) (59)

where Pxy(ν),Pyy(ν) are the usual (Cj-valued) (cross-
) spectral density matrices of x(t),y(t), respectively. The
Wiener filter for the denoising problem (32) is

X̂(ν) = Pxx(ν)P−1
yy (ν)Y(ν) (60)
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Eq. (60) shows that X̂(ν) is obtained from Y(ν) by 2
successive Hermitian filters, since spectral density matrices
are Hermitian – and so are their sum and inverse. Introducing
an intermediate variable Z one gets

Z(ν) = P−1
yy (ν)Y(ν) (61)

X̂(ν) = Pxx(ν)Z(ν) (62)

Quaternions equivalents are readily obtained using (46) and
definitions of matrix spectral densities in terms of Stokes
parameters Si, i = 0, 1, 2, 3 [10, p. 214]:

Z(ν) = 2
[
(1− Φ2

y(ν))S0,y(ν)
]−1

× (Y (ν) + Φy(ν)µy(ν)Y (ν)j) (63)

X̂(ν) = 2−1S0,x(ν) (Z(ν)− µx(ν)Φx(ν)Z(ν)j) (64)

since Stokes parameters and polarization axis are related like
[18] S0Φµ = iS3 + jS1 + kS2. Plugging (63) into (64)
and reorganizing terms yields to the general Wiener filter
expression (34). To obtain the error expression remark that
[18, Theorem 1]

ε =

∫ ∞
−∞
S(Γee(ν))dν (65)

where e(t) = x̂(t)−x(t). Using the quaternion PSD definition
(73) together with the Wiener filter expression (34) one gets
the optimal error expression (39) by developing (65). To obtain
(40) start by writing explicitly Γyy(ν) = Γxx(ν) + Γww(ν)
such that (ν-dependence omitted):

Γyy = S0,x + S0,w + S0,xΦxµx + S0,wΦwµw (66)
= S0,y[1 + Φyµy], (67)

where, using α = S0,x/S0,w the frequency domain SNR:

S0,y = S0,x + S0,w (68)

Φyµy =
α

1 + α
Φxµx +

1

α+ 1
Φwµw. (69)

Plugging (68) and (69) into (39) yields (40).

APPENDIX C
SIMULATION OF BIVARIATE WHITE NOISE

For sake of completeness we recall some recent results from
[18]. A bivariate white noise w(t) = u(t)+iv(t) has a constant
quaternion PSD given by

Γww(ν) = σ2
u + σ2

v + j(σ2
u − σ2

v) + 2kρuvσuσv. (70)

where σ2
u, σ

2
v are variances of white noises u(t) and v(t), and

ρuv is the correlation between u(t) and v(t). This quaternion
PSD has no i-component, meaning that a bivariate white noise
is always partially linearly polarized. Importantly, w(t) is
unpolarized when σ2

u = σ2
v and ρuv = 0, i.e. when w(t) is

proper [12].
Simulating a bivariate white noise w(t) is equivalent to

simulating 2 correlated real white noises u(t) and v(t).
Alternatively [18], one can simulate w(t) directly with the
desired polarization properties using an unpolarized/polarized
parts decomposition. Let 0 ≤ Φ ≤ 1 be the desired degree
of polarization, and θ ∈ [−π/2, π/2] the linear polarization

orientation angle and S0,w > 0 the total power. Let wu(t) be
an unpolarized white noise and wp(t) be a real-valued white
noise, both of unit variance and independent from each other.
Then the white noise w(t) constructed as

w(t) =
√

1− Φ
√
S0,ww

u(t) +
√

Φ
√
S0,w exp(iθ)wp(t)

(71)
has quaternion PSD Γww(ν) = S0,w + jΦS0,w cos 2θ +
kΦS0 sin 2θ where one recognizes a linear polarization state
with spherical coordinates (Φ, 2θ, 0), see Fig. 1.

APPENDIX D
SPECTRAL REPRESENTATION OF STATIONARY BIVARIATE

SIGNALS

We recall some important results from [18]. When x(t) is
a random bivariate signal the QFT definition (3) is no longer
valid. Instead it has to be replaced with the spectral represen-
tation theorem [18, Theorem 1] which states for harmonizable
signals x(t) there exist quaternion-valued spectral increments
dX(ν) such that

x(t) =

∫ +∞

−∞
dX(ν)ej2πνt, (72)

the equality being in the mean-square sense. Then one defines
the quaternion PSD Γxx(ν) accordingly [18] as

Γxx(ν)dν = E
{
|dX(ν)|2

}
+ E

{
dX(ν)jdX(ν)

}
(73)

where E {·} denotes the mathematical expectation.
Let x(t) and y(t) be two jointly stationary bivariate signals.

These signals are uncorrelated [18] if and only if, for all ν

E
{

dX(ν)dY (ν)
}

= E
{

dX(ν)jdY (ν)
}

= 0. (74)

This is the quaternion equivalent to saying that the cross-
spectral density matrix is zero: Pxy(ν) = 0.
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[19] M. Richartz and H.-Y. Hsü, “Analysis of Elliptical Polarization,” Journal
of the Optical Society of America, vol. 39, no. 2, p. 136, 1949.

[20] C. Whitney, “Pauli-Algebraic Operators in Polarization Optics,” Journal
of the Optical Society of America, vol. 61, no. 9, pp. 1207–1213, 1971.

[21] P. Pellat-finet, “Représentation des états et des Opérateurs de Polarisation
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