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Abstract. Future missions such as Solar Orbiter (SO), Inter-sion reached with SOHO/EIT images can be transposed to the
Helioprobe, or Solar Probe aim at approaching the Sun closesituation where the resolution is increased from SoHO/EIT to
than ever before, with on board some high resolution imager$SO/HRI resolution at perihelion.
(HRI) having a subsecond cadence and a pixel area of abo
(80 kmY at the Sun during perihelion. In order to guaran-
tee their scientific success, it is necessary to evaluate if th
photon counts available at these resolution and cadence wi
provide a sufficient signal-to-noise ratio (SNR).
For example, if the inhomogeneities in the Quiet Sun
emission prevail at higher resolution, one may hope to lo-1 Introduction
cally have more photon counts than in the case of a uniform
source. It is relevant to quantify how inhomogeneous theMany fine-scale structures in the corona do not seem to be
quiet corona will be for a pixel pitch that is about 20 times well resolved by current imaging telescopes. Filamentary
smaller than in the case of SOHO/EIT, and 5 times smallerand threaded patterns are observed in coronal loops¥e-g.
than TRACE. Forest2007); in the Quiet Sun (QS), small dynamical events
We perform a first step in this direction by analyzing and such as brightenings or blinkers point at unresolved sub-
characterizing the spatial intermittency of Quiet Sun imagesstructures. Having sufficient resolution is also necessary
thanks to a multifractal analysis. We identify the parametersto assess whether nanoflares occurring in QS may explain
that specify the scale-invariance behavior. This identifica-coronal heatingRarker 1988 Krucker and Benz1998 As-
tion allows next to select a family of multifractal processes, chwanden et al2007 Mitra-Kraev and Benz200% Bergh-
namely the Compound Poisson Cascades, that can synthesigans 2002. Several studiesBerghmans et al.1998
artificial images having some of the scale-invariance properKrucker and Benz1998 Aletti et al., 2000 present evidence
ties observed on the recorded images. in favor of a turbulent mechanism, with individual dissipative
The prevalence of self-similarity in Quiet Sun coronal Structure far below the instrumental resolution limit.
images makes it relevant to study the ratio between the Scale-invariance has been observed down to the smallest
SNR present at SOHO/EIT images and in coarsened imageeachable scales, namely down to the PSF dimensions of to-
SoHO/EIT images thus play the role of “high resolution” im- day’s highest resolution instruments. This paper studies this
ages, whereas the “low-resolution” coarsened images are récale-invariance (or self-similary) property in the case of a
binned so as to simulate a smaller angular resolution and/oPOHO/EIT data set, first by computing the Fourier spectrum,
a larger distance to the Sun. For a fixed difference in angu@nd next by performing a multifractal analysis. But, should
lar resolution and in Spacecraft-Sun distance, we determinéhis property persist to even smaller scales? To answer this
the proportion of pixels having a SNR preserved at high res-guestion, we can only rely on current observation extrapola-
olution given a particular increase in effective area. If scale-tions and on physical theory and modeling. We now briefly
invariance continues to prevail at smaller scales, the concludiscuss some of those approaches.
A first element stems from the consistency between quan-
Correspondence tov. Delouille tities observed by both EIT and TRACE, albeit at resolutions
(v.delouille@oma.be) differing by a factor five in 1-D 25 in 2-D). For example,
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3170 V. Delouille et al.: High resolution coronal imaging

Benz and Krucke(2002 show that EIT and TRACE stud- a multiplicative cascade approach in order to infer a scale-
ies agree about the distribution of energy released by flareinvariant rule for the Ohmic dissipation measure. This rule is
like events in the Quiet Sun. Power-law distributions fit both then used to re-estimate with greater accuracy the multifrac-
data, and they find similar values for their slopes. Along atal spectrum. Multifractal analysis has been also applied to
similar line, a Holder analysis irDelouille et al.(2008 ev- the analysis of solar magnetograr®eprgoulis2005 Abra-
idences a continuity between supra- and intra-pixel scalesmenkq 2009, and of the temporal variation of the emission
Intra-pixel variability is therein estimated using a one-minute observed in several RHESSI X-ray energy bardsAteer
cadence EIT data set, for which solar rotation induces a diset al, 2007).
placement (from one image to the next) that is less than the In this work, we aim at generating synthetic images at EIT
pixel. To go to smaller scales, note first that regions of strongresolution that capture several statistical properties of Quiet
magnetic field, such as bright points, exhibit brighter EUV Sunimages. To do this with minimum a priori, we propose to
emission, while regions of weak magnetic field lead to aexploit the statistical scale invariance observed in data. We
darker emission. Hence scale-invariance in the EUV emisfirst perform a multifractal analysis. It yields a set of pa-
sion might follow from similar properties in the magnetic rameters, namely the multiscaling exponents, that quantita-
field strength. The tectonics model Bfiest et al.(2002 tively describe this scale invariance. Next we aim at finding
suggests a highly fragmented photospheric magnetic configa family of stochastic processes that obey the same statisti-
uration in the quiet network, where the fundamental unitscal properties with the same set of parameters, thus injecting
of flux are intense flux tubes having a 100 km diameter. Fi-minimum a priori in the model. The corresponding synthetic
nally, much literature has been devoted to the study of flaramages are exempt of spurious artifacts such as cosmic ray
distributions, see e.®@erghmans et a{1998; Aschwanden  hits, projection effect, or error sources in the data. This is
et al.(2000; Vlahos and Georgouli@004. Power-law dis-  the first achievement necessary in the elaboration of a way to
tributions for e.g. the energy release and volume occupied byreate synthetic images at arbitrary resolution. The analysis
flares might be explained by self-organization and the casand parameter identification step is essential in order to know
cading nature of flare activities. Such statistical theory ofhow to extrapolate the properties of EIT images at higher res-
flare activity are physically motivated by the turbulent nature olution. Moreover, our methodology for synthesizing Quiet
of the solar coronaRiskamp 2003 Einaudi et al. 1996 Sun EUV images is new: having observed certain proper-
where the dissipative scale is estimated to be of a few meties on EIT images, the associated parameters are then used
ters Einaudi and Vellj 1994). within a multifractal stochastic process that can simulate EIT
One notices that the above reasoning relies on rather hyimages.
pothetical guesses, and this is an additional motivation to ac- There are two main applications of this procedure in so-
tually plan high resolution observations of the QS in coro- lar physics. First, artificial EUV images can be used for
nal lines. We are also aware that the observed intensity in @éhe testing and calibration of automatic feature finder pro-
given EUV optically thin spectral line entangles the tempera-cedure, see e.@gsissot and Hochedg2007. Second, and
ture and the emission measure. The above issue is worsen@dost importantly for the purpose of this paper, since QS im-
by the possible contamination from other lines in the pass-ages exhibit self-similarity behavior that can be reproduced
band, and by the projection effects. It remains neverthelessvith a multifractal stochastic process, it makes sense to study
of interest to prepare the conceptual tools that will enable thehe relationships between intensities across different scales
analysis of better quality data when they come. of observation. More precisely, we can look at the statistics
Beyond the Fourier spectrum, a multifractal analysis per-of the ratio between intensity values at full resolution and
mits to further characterize the spatial scale-invariance, oin a rebinned version of the original images. The conclu-
more generally the so-called “intermittency” of a stochas- sion reached here can be transposed to higher resolutions as
tic process Castaing and Dubrullel995 Frisch 1995 Ar- long as the scale-invariance continues to prevail. Our study
neodo et al. 1997 Chainais et a). 1999. It has been therefore provides some guidance for radiometric studies re-
extensively used for the statistical modeling of turbulent lated to future high resolution missions. The latter are much
flows (Frisch 19959, Internet traffic Feldmann et a].1998), needed since the spatial resolution of current telescopes pre-
natural (Turiel et al, 1998 Chainais2007) and meteorolog- cludes definite conclusion about the fundamental processes
ical images Roux et al, 200Q Grazzini et al.2007), as well  that determine the existence and the underlying physics of
as ionospheric indice€pnsolini et al. 1996). the transition region and of the quiet corona. In the follow-
In solar physics, studies on the fractal dimension wereing, we are considering in more details the case of High Res-
achieved for Quiet Sun EUV networkG@llagher et a).  olution Imagers (HRI) on board Solar Orbiter (SO).
1998, for the spatial extend of nanoflares evemtsghwan- HRIs on board SO will produce at perihelion images hav-
den and Parnel2002), and for active regiondcAteer et al, ing a pixel area at the Sun of (80 kfn)Evaluating the loss
2005. Lawrence et al(1995 present a multifractal anal- in SNR when going from low to high resolution is necessary
ysis of photoelectric images of line-of-sight magnetic fields in order to guarantee the scientific success of this high res-
in solar active regions and quiet photosphere. They consideolution mission. Indeed, the smaller the area covered by a
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pixel, the lesser the signal, and the fainter and more dynamwith a higher resolution. More precisely, we simulate the
ical the target. Similarly, the higher the cadence, the shortedegradation in resolution starting from EIT images using an

the exposure time, and the lesser the signal again. appropriate coarsening of the data. Taking the ratio between
Considering that the energ¥ emitted from the Sun the value ofQ obtained at low (coarsened) and high (EIT
follows a Poisson process, and hence that SNRVE, original) resolution, we obtain an estimate of the gain in ef-

SNRP<E, Hochedez et al(2001) describe the relationship fective area needed in order to keep at high resolution the

between the quality of observations (left hand side) and theSNR (as defined in EdL) larger or equal to its value at low

experimental conditions (right hand side) as follows: resolution.

If the scale-invariance continues to prevail down to a
SNF’ < AeiiL (1) (80km) scale, our conclusion about the needed gaifgin

AsunTExpTime ~  d? may be transposed to the situation where the resolution is

whereAgunis the Sun area covered by one pixBixpTime i increased from EIT to HRI resolution at perihelion.

the exposure timedef is the effective area of the telescope N future work, we aim at generating images directly at
(in m2), L is the radiance (in W st m~2), andd is the dis- HRI resolution at perihelion. However, additional difficul-

tance between the spacecraft and the Sun. ties arise in this case because n(_)t only must th(_a multi_fractal
When comparing the situation of EIT with the one fore- spectrgm be rgspected, but thg histogram of rebinned images
seen for an HRI on board SO, we observe that getting closefust fit the histogram of EIT images as well. Indeed, the
to the Sun provides a factd?=25, but sincedsunis divided multllfractal stochastic model'used in this paper to generate
at the same time from (1800 kFEIT) to (80 km} (HRI), QS images _does not constrain the simulated images to have
the effective areaer needs to be enhanced by a factor of the same histogram as the real ones. (Both histograms are

(1800/80)2/25~20 or more in order to preserve a SNR for however fairly close for images generated at the same scale

a uniform source in space. Moreover, if one takes into ac-Of OPservation as the physical ones.)

count the temporal variability of solar features, this factor TS paper is structured as follows. Sectidmiescribes
gets even largerBerghmans et ak1999 showed that the the observations considered here with a general overview of
typical duration of an event was proportional to its size. If NOiSe sources presentin EIT images, followed by a presenta-
this argument still holds at a scale of (80 KnjRI should tion of the data set used in this paper. In S8ete first recall
have an exposure time that(#800/80)2 times less than in the basics behind wavelet-based multifractal analysis. Next
the case of EIT. The effective area should then increase b€ Present our multifractal analysis of Quiet Sun images and

1800\ ) o discuss its limitations. With the set of parameters identified
a factor(g—o) /25:-10" in order to have a SNR similar t0 i Sect.3, we are able to synthesize Quiet Sun-like images

EIT images. in Sect.4. The real and artificial EIT data sets are used in
Our main contribution in this paper is to refine this argu- Sect.5 to study the effects of the transition from low to high
ment by taking into account the inhomogeneities present inresolution when taking into account the multifractal behavior
the solar corona. Indeed, these might provide an indepenef the observations. We then discuss the implications of our
dent help in the quest for a sufficient SNR, with subsets ofstudy for the construction of high-resolution instruments.

high-resolution pixels likely to carry a large part of the en-
ergy present at a lower resolution.

Towards quantifying the needed gainArs, we firstre- 2 Observations
write Eg. (1) in a more general form as

A We first recall the main sources of errors present in EIT im-
SNR < —esz/ / L(s, t)dtds , @) ages. After having described our data set, we discuss the
4 Jreprime J Asun shape of its histogram and power spectrum.

which now considers the time dynamics and possible spa-

tial inhomogeneities in the emission process. In this paper,z'1 Noise in EIT images

we consider a fixed exposure time and a fixed effective areaSeveral sources of errors are contaminating the recording of
and we investigate how the spatial distribution of the radi—inCident electromaanetic flux in EUV ima gs In a sim ﬁ]
ance will affect the SNR in the case of Quiet Sun data. As 9 ges. P

mentioned above, the temporal variability is also necessar]erOI description of the process converting electromagnetic

ily non-uniform; the methods presented here will be adapte{u:tg:]tqo _?_E:alhr;ltjé?ﬁ?]i’r;ogg{r?nsrcfgis'rzg':%i :jheessrl?ggglb
in the future to see how this variability affects positively the ayPoiss'on dis?ribution and is m(fst of the time the dominanty
SNR in case of a high cadence instrument. '

We are interested in the evolution of the quantity source of NOISE. Second the P.omt Spread Fu'nct|on (PSF)
acts as a blurring operator, and introduces spatial average of
Sa. L(s)ds unresolved features. This is at the origin of the so-called
sun . . . o . .
=7 - (3)  “spatial noise” discussed ibelouille et al.(2008. Third, a
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Next, we want to exclude disks containing active regions.
To do so, we keep only disks with intensitiéssuch that
the probabilityP (I>U)<10* for a given threshold/, de-
fined as the quantile such th&{/>U)=10% for an image
containing one active region. We obtain a set of 54 disks
centered on the Sun, all having the same field of view. Note
that we did not attempt to erase cosmic rays, and hence no
interpolation or denoising method has been used.

To perform the wavelet-based multifractal analysis in
Sect.3 below, we consider collectively the 54 squared im-
ages of size 512512 containing the solar disks of 1/2 ra-
dius wide. In fact, in order to deal with border effect in the
wavelet analysis, we consider only the wavelet coefficients
associated to the squared image of size>2®6. In other
words, the multifractal analysis is performed on the 5522
images, but we keep only results exempt of any border effect,
hence in the end, it is the squared image of sizex25H
lying within the disk of a half radius wide which is charac-
terized by our analysis, see Fi.

Fig. 1. Example of a Quiet Sun images seen by EIT in 19.5nm,
with indication of the squared area taken into account. The mul-
tifractal analysis characterizes the region within the square of siz
256x256.

Remark. We considered EIT rather than TRACE images for the
following reasons. EIT images have an always constant exposure
etime, and the EIT archive has a regular sampling in time and space.
It allows to collect images having the same Field of View, and to
limit the shortening effect at the limb. Moreover, the compression
L . . algorithm of the TRACE images would introduce other artifacts in
spectral selection is operated on the signal before it reachet e analysis
the CCD detector. The latter presents inhomogeneities in its '
response from one pixel to the next; these have to be flat: .
. . . 2.3 Histogram
field corrected, usually using the solar software (ssw) library.

Fourth, when electronics next converts photon counts to dig- . . .
P gThe solar disks data set described above contains a sample of

ital numbers some read-out noise is introduced. Finally, not 8% 10 pixels. Th iting hist Fiza sh
that SOHO/EIT records the image in a lossless way, Where;E: X pixels. The resulting histogram on Figa shows a

most of the STEREO/SECCHI/EUVI images are recorded ighly non-Gaussian distribution, with the logarithmic repre-
: - égntation exhibiting a straight line for large intensities indica-

artifacts, especially in regions with low photon counts. For.t've of.a povyer-law behavior. .The. cgrrespondlng power-la}w
dex is estimated to 4.9, which is in good agreement with

a more detailed description of these types of noise, we refef %€
to Delouille et al.(2008. Aletti et al. (2000.
In the following, we consider that the Poisson noise is
dominant, and therefore that SRRE, whereE is the en-
ergy emitted from the Sun. In Se&, we will talk indiffer-

2.4 Spatial power spectrum

ently about “intensities” and “SNR”. The Fourier spectral density of Quiet Sun images gives in-
dication about the scale invariance nature of the process.
2.2 Data set description Individual power spectra are computed for each of the 54

images of size 256256. We check the validity of the
Our study is based on full-Sun images taken between 2 Jartime-invariance and isotropic assumption and next we com-
uary and 28 December 1997 by ElDdlaboudingre et al. pute the omnidirectional power spectrum by averaging over
1995 onboard SoHO in the Fe XII (19.5nm) line, which all wavenumber&=(k1, k2) having a same norrik||, see
forms at 16x10° K. We selected a first set of 1024024  Fig. 2b. There, the Fourier wavenumbdrsre expressed in
full Sun images recorded with at least 5 days parsing, so asad/Mm, where we consider that one pixel corresponds to a
to maximize statistical independence between the images. scale size of 1.8 Mm on the Sun.

These images contain no missing blocks, and are pro- The azimuthally integrated spectrum decreases for Fourier
cessed with theit_prep  procedure of the solar software wavenumberk <1.1rad/Mm, and becomes constant there-
(ssw) library. Further, in order to limit the shortening effect after. This upper bound corresponds to scale sizes of
at the limb to roughly 15%, we do not consider the full Sun 5700 km and is close to the Nyquist number equal t¢ 2
images but rather disk3 of a half solar radius wide centered whereG is the linear pixel size¢~~1.8 Mm on the solar sur-
on the Sun, see Fig. face for EIT).
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10 ‘ 11
s —Quiet Sun 97
10 - - -Frac. Int. CPC = 10t
K% --'Log-Normal 3
Q 5 =
x 107F Q
= g o
Y— 1))
O 4 =
> 10" o
3 3
= S
5107 S
= ®
10 . \‘\ a Ty
M !
1 \
10 - . . . .
10* 10° 10° % -15 -1 -0.5 0 0.5
Intensity Log10(k) [rad / Mm ]
@ (b)

Fig. 2. (a)Histogram of original data set in log-log scale, together with a lognormal distribution having the same mean and variance, and
the histogram of a set of 54 artificial images generated by a multiplicative cascade (hypd@hnidirectional power spectrum. For Fourier
wavenumbers 03<||k||<1.12 rad/Mm, the spectrum exhibits a power law with index equal2a8 (estimation using least squares).

For almost two orders of magnitudes (betweed30and We consider the 54 EIT images data set described in
1.12 rad/Mm), the spectrum follows a power law with index Sect.2.2 Each of these images is decomposed using the
equal to—2.8. This value is close to the2.7 index value tensor product algorithm, which applies one-dimensional (1-
found byBenz et al(1997) for Yokhoh/SXT images showing D) DWT on the column of an image, followed by another
quiet disc corona, and is similar to the index value-& re- 1-D transform on the rows of the resulting coefficient ma-
ported byGomez et al(1993 for active regions observed by trices. We thereby obtain 3 types of detail coefficients,
the Normal Incidence X-ray telescop@dlub et al, 1990. that give, respectively, information about vertical, horizon-
On a three hours data set of EIT.2®%m imagesBerghmans  tal and diagonal variations in the image. The 1-D filter is
et al.(1998 found a lower value 0f2.52. the minimal phase Daubechies filter with 2 vanishing mo-

The power law density exhibited by the omnidirectional ments. It was computed with the “Rice Wavelet toolbox”
power spectrum is an indicator of the scale invariance, or(http://www-dsp.rice.edu/software/rwt.shjml
self-similarity property of Quiet Sun images in a certain  Figure 3 shows the histograms of the corresponding 2-D
range of scale. For high wavenumbers the Fourier spectrunivavelet coefficients at different scales. Note that the hori-
represents mostly white noise, hence the flattening observegontal, vertical, diagonal coefficients are considered all to-
between 112 rad/Mmck<2.5rad/Mm in Fig.2. gether. There, the probability density functions of wavelet

The next section investigates more deeply this self-coefficients evolve from nearly Gaussian at larger scales
similarity property through a wavelet-based multifractal (¢=2/=32, j=5) to far from Gaussian at smaller scales
analysis. (a=1). This observation combined to the power law spec-

trum illustrates the spatial intermittency, or patchiness, of the
Quiet Sun EUV images. Similarhyletti et al. (2000 no-
3 Wavelet based multifractal analysis ticed that at smaller scales one observes stronger departures
from Gaussian statistics.
3.1 Wavelet analysis
3.2 Principle of multifractal analysis
From previous section, we can reasonably argue that the
(second order) power spectrum obeys a power law behavThe purpose of multifractal analysis is twofold. First, when
ior. Moreover, the scale invariance property is usually con-dealing with functions or realizations of stochastic processes,
nected to some spatially intermittent behavior. Thus, a re-it can be used to characterize the relative importance of sin-
fined analysis of the scale invariant behavior of Quiet Sungularities in the data. This is quantitatively done by identify-
images requires the study of higher order quantities based oimg the so-called multifractal (or singularity) spectrumii)
quantities that are spatially localized, which is not the case ofwhich can be roughly interpreted as a distribution of singu-
Fourier modes. We use here the discrete wavelet transforrtarities characterized by the so-calledlder exponent, see
(DWT) coefficients derived from an orthonormal wavelet ba- Appendix A. The closeri to zero, the stronger the singu-
sis (Daubechies1992 Mallat, 1998. larity. Second, when dealing with scale invariant stochastic
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value of thed(j, 1) is zero. Although in principle it is better
to know¢ (¢) for all values ofg, in our case values @f<0 do

> not bring fundamental information. The knowledge:a#)
c for ¢>0 is sufficiently informative to constrain our model in
)
S Sect4.
(1)
; 3.3 Multifractal analysis of Quiet Sun images
e!
% We estimated the structure functi6pwr (¢, j) asin Eq. 4)
= using the 54 Quiet Sun images that compose our data set.
G’S Figureda shows the scaling behavior &wt (g, -) for some
s) . values ofg. A linear behavior of log Spwt (g, j) as a func-
1=5 tion of j=log, a is observed for 2 j<5. This is indicative
o o \/\ ‘ ‘ ‘ N AL of a scale-invariant behavior of the set of EIT images in this
-30 -20 -10 0 10 20 30 range of scales.
d@.h The exponents(q) are estimated from a linear regression

performed on logSpwt (g, j) in the scaling range; <5.

Fig. 3. Histograms of 2-D discrete wavelet coefficients computed Figure 4b shows the set of the resultingg) estimates for

from 54 Quiet Sun images taken by EIT at 19.5 nm during the year_lqus' NoFe Fhat errorbars are Comp_uted as the empirical
1997. standard deviation of the set of 54 estimates. As remarked

above, estimates for negative valueg @fre numerically un-

stable; this yields a large variability that results in wide error
processes in particular, the multifractal analysis can accupars. Error bars fag>3 becomes important as well. We will
rately characterize the statistical structure of the processdiscuss this point in Sec8.4.
Indeed, it appears that the sin_gu_lar behavior (described by \we observe a flattening of logowr(q. j) at small scales
D(h)) of realizations of a self-similar process can generally (for j=1, j=2). It may be due to the PSF that is larger than
be connected to the scaling behavior of the so-called structurg, o pixel size, or to the fact that the wavelet coefficients cap-
functions S(¢, a). A possible definition of these structure e mostly noise at the finest scale. It is interesting to note
functions is based on the use of a DWT. THw7 (4, /) IS another flattening of the curves fge5 (and even a maxi-
compu_ted as the empirical moment of orgeof the wa_velfet mum for Sowr(3, j)). There, scale invariance breaks down
coefficient modulusAbry et al, 2004 Jaffard 1997 Riedi, 554 we observe a characteristic scale of approximately 64

2003: pixel wide (115 Mm on the Sun). Typically, such character-
1 ‘ istic scale appearing in a structure function is indicative of

Sowt(g. j) = — Y _1d(j. D|? ~ 2/¢@ (4)  the scale of injection of energy in the turbulent flows. In our
N

7 1=1 case, it is compatible with the order of magnitude of the size
wheren; is the number of wavelet coefficients(;, /) at ofsuper-_granules, an important structure that governs the tur-
scalea=2/. For a multifractal process, ttwr(q, j) obey bulence in the corgna. ) N
a powerlaw scaling behavidSpwr (g, j)~at@~2/¢@  at Ir_l Sect.5 we will compare_lnt_en5|t|es between E_IT and
least for some range of scalesand orders;’s. For a large re_blnned_—EIT images. Our aim is to _draV\_/ conclusions that
number of self-similar processes, it can be established that/illl remain valid as long as the scale-invariance observed on
the multiscaling exponents(q) and the multifractal spec- EIT images continues to prevail at EIT sub-'p|xel scales. As
trum D (h) are linked through a Legendre transform, see Ap-Such, we must limit the amount of coarsening so as to stay
pendixA. The functionz(q) is a signature of the scale in- Wl_thln the scale-m_va_rlance range o_bserved_ on _EIT images.
variance property of the process under study. For a stochaslVith the characteristic scale appearing on Rag.this means
tic multifractal process, they contain information on the way that the rebin must be done on blocks of size smaller than
the distributions of wavelet coefficients change from Iarger32><32-
to smaller scales. This is the reason why we rather talk
of “multiscaling” (Castaing and Dubrullel995 Chainais 3.4 Validity and limitations of multifractal analysis
2007). The set of exponents(g) is used as a set of param-
eters in the model described in Set. In our application, = When considering estimates of moments of higher orders,
Spwt(q, j) is obtained by summing over the wavelet coef- one may wonder about 1) their existence and 2) their preci-
ficients of the 54 images that compose our data set. Thision. We examine hereafter two arguments which show that
method is fast and efficient for positive valuesqobut be-  the ¢(¢) estimated from Quiet Sun images must be consid-
comes numerically unstable fg0 since the most probable ered differently ifg <2.25 org>2.25.
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The first argumentiudok de Wit 2004 is based on the
analysis of the integrand of the theoretical quantity

(e.¢]

Shur(a. ) = /0 pOpydy; (5)
wherey ;=|d; .| denotes the set of wavelet coefficient modu-
lus at scalej, andp(y;) is their probability density function
(pdf). ThenSpwr in (4) is viewed as an empirical estimate
of the “true” quantitySgWT. Dudok de Wit(20049) indicates
how to estimate the maximal order of momegptax, such
that the integral in%) begins to diverge. When applied to
our 54 EIT images (only the centered parts of sizex2866),
the method givegmax>2 for the first two finest scales, and
gmax>21 for the last three coarse scales.

Note that the test proposed Dudok de Wit(20049 is
not a proof that the moment estimates do not exist for
q>¢gmax but rather an indication that the variance of these
estimates is large. One can still numerically estimate th
structure functionsSpwr (g, j) for ¢>2 and get some in-
formation from its scaling behavior. Indeed, theoretical re-
sults on multifractal analysiB@arral and Mandelbro2002
show that the multifractal formalism (see AppendiX re-
mains valid forh* <h<h* such thatD(h)>0 only, i.e. for
q9*<q=q}. In two dimensionsg? is found by solving the
equation;z (q)=2+q¢’(q), where¢’(g) denotes the deriva-
tive of ¢(g). Moreover, forg>g%, one observes the lin-
ear behaviot (9)=2+q¢'(¢7}) described irLashermes et al.
(2009.

Since our aim is to propose a multifractal model of Quiet

€,
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Moreover, in an homogeneous system, the spatial mean at
scaler, (¢,), does not depend on and hence (1)=0. As

a consequence, K62 theory predicts th&tv|?)~r4/3+7(@)

The link between the scaling behavior of the dissipation
and that of the velocity field is expressed in terms of the ve-
locity incrementss,v. Thus, it suggests to look at the ve-
locity field itself as a fractionally integrated version of or-
der H=1/3 of the dissipation field. In the Fourier domain,
this translates into a/1k || filtering (with H=1/3 in turbu-
lence). From a mathematical point of view, the dissipation
field would be modeled by the density of a multifractal mea-
sure (or by a probability density function of some distribu-
tion).

In Fig. 4b we see that for the intensity of Quiet Sun images
we gets(1)=0.55+0.06. This indicates that the underlying
signal is rather similar to the velocity field than to the dis-
sipation field above. Therefore, the intensity field of Quiet
Sun images cannot be directly modeled by the density of
some multifractal measure while these measures are the eas-
iest multifractal objects to built and simulate. To overcome
this apparent difficulty, we propose to model EIT images by a
(fractionally) integrated version of some multifractal density
characterized by a set of multifractal exponengg). The
multiscaling exponents of the resulting intensity field will be
such that

¢(q@) =qH+1(q), (6)

where H=¢ (1) represents the “fractional order” of the inte-
gration process. Fractional integration here loosely means a

Sun images, this model must obey the same linearization efl/lIk|l” low-pass filtering, wherk is the Fourier frequency.

fect as the EIT images, hence the importance of estimatin
g}. The arguments ilDudok de Wit(2004 and inLash-
ermes et al(2009) are consistent in showing that a lack of
statistics (for largey) will induce a growing variance of the
estimate, but that the potential bias will remain limited. To
summarize, we will perform a multifractal analysis of Quiet
Sun images for 8¢ <5 because our estimates are numeri-
cally unstable fog <0, and because we need to identify the
critical orderg; . For Quiet Sun images, we obtain the value
of g ~2.25.

4 Synthesis of Quiet Sun-like images
4.1 Physical interpretation of multiscaling exponents

When considering the data as a multifractal field, it is usually

%.2 Fractionally integrated Compound Poisson cascades

Multifractal measures are typically generated by means of a
multiplicative cascade process. A measure is initially dis-
tributed uniformly over a set. An iterative division of the
measure among subsets, and next sub-subsets is then per-
formed up to infinity. The division is done according to
a scale invariant allocation rule, which in the most inter-
esting examples is probabilistic. Several authors have in-
troduced precise definitions of multifractal measures in one
dimension §chmitt and Marsgn2001, Barral and Man-
delbrot 2002 Muzy and Bacry 2002 Bacry and Muzy
2003 Chainais et a).2003 2005 Schmitt 2003, and re-
cently in dimensionD>2 (Chainais 2006 2007 Schmitt
and Chainais2007) for image modeling purpose mainly. An
important subset of the family of multiplicative cascade pro-

seen as based on some underlying positive multifractal scalazesses is that of Compound Poisson Cascades (CPC). CPC

field. For instance, let us recall that the Kolmogorov 1962
(K62) theory of turbulencelolmogoroy, 1962 proposes to
describe the statistics of the velocity increments at schle
(18-v]9)~(ed)r9/3 where(e,) stands for the locally averaged
energy dissipation at scate Then, Kolmogorov postulates

were originally introduced barral and Mandelbrd2002.
They provide us with a model to generate multifractal densi-
ties with prescribed multiscaling exponentg ), and more-
over their numerical synthesis is easy. CPC allows to gen-
erate the necessary underlying multifractal density evoked

that the dissipation is intermittent and obeys a scale invari-above. Their role with respect to the intensity in EIT im-

ance law so thate)~r7@ . With this definition,z(0)=O0.

www.ann-geophys.net/26/3169/2008/

ages is equivalent to the role of the dissipation fiehdith
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Fig. 4. (a)Structure functiond=—0.5, 1, 2, and 3) estimated from DWT of Quiet Sun images in 19®J.Exponentg (¢) obtained from
the DWT structure functions, for the original Quiet Sun images, and for simulated images using Compound Poisson (CaEspdesnts
7(¢) deduced front (¢) by 7(¢)=¢(9)—4¢ (D).

respect to velocity increments in K62 theory of turbulence.of H. We getH=0.55+0.06. Next,t(q) is estimated from

See AppendixB for a more detailed presentation of Com- the relationt (¢)=¢(g)—qZ(1).

pound Poisson Cascades and their numerical synthesis. We studied the adequacy of several compound Poisson
The main ingredient that controls the multifractal expo- cascade models to our experimental data. The best fit was

nentst(g) of a CPC is the distribution of the so-called obtained with a model such thét=((14+7)Y7u)” whereu

multipliers denoted by, see Sect. 4.3 and Appendix B. is uniformly distributed in0, 1], and7 >0. Such a model is

Indeed, once the law of th& is determined, one has characterized by

1(q)=q(EW—-1)+1-EWY (E denotes mathematical expec- ey

tation) forg* <g<q7% (see Sect3.4and AppendixB). As a a+7) (for0<q <q*) 8)

' . _Tcpc(q) =1—
consequence, the main thrust here is to propose a modeling (1+4T)

of Quiet Sun images by fractionally integrated Compound_ . o .
Poigson Cascadeg. In gractice the ¥ractignal integratilca)n cor\-N'th T.:O‘85 (segChamals 2006 2007, fo_r a detailed pre-
responds to a /Alk||” filtering which is carried out in the senta’uor Of. qvaﬂable models)'. Th'e e'X|stence of an upper
Fourier space thanks to a fast Fourier transform and by usin oundg? originates from the linearization effect described
a 1/|k|| frequential response that is truncated near the ori- Lashermes et a(2004), cf. Sect.3.4. Therefore, one ex-
gink=0 (since it is not defined at this point). We have chosenPeCts (4) to behave as

to impose a saturation at the value associated to the smallest (14 T)4

available discretized frequency.This low-pass filter preciselyg_cpc(q) _ gH +1-— m for 0<gq <q7, )
modifies the multifractal exponents so that giveig) one 24 q2'(q%) for ¢ > ¢*

gets a multifractal intensity-like field with multifractal expo- + -

nents where the best fit is obtained wili; ~2.25 and7=0.85.

The estimates obtained from the multifractal analysis of 54
(7)  realizations are shown on Figb (black circles): they are
quite consistent with the theoretical values, exceptgfad
where¢’ denotes the derivative @f. The next section ex- thatwe do not consider here because of numerical instability.
plains how to optimize the fit of a CPC stochastic process to
the modeling of Quiet Sun images. 4.4 Validation of the model

qH +1t(q) for 0<q <gq}

fepc(q) = {2+qc’<qi> for ¢ = g .

4.3 Model identification Once we have identified the parameters of the model de-
scribed above, we can numerically synthesize as many re-
The model identification concerns two quantities: the frac-alizations as needed, at any desired resolution. To test the
tional orderH of integration, and the multiscaling exponents validity of our model, we consider several indicators: the ex-
t(g) in EQ. (7). The parameteH describes the linear trends ponents; (¢) andz(g), the Fourier spectrum, the histogram,
of ¢(g). The functionz(¢) is a non linear concave function and the visual aspect of synthetic images.
obeyingt(0)=t(1)=0. It controls the multifractal behav- First, we generate 54 independent realizations ob&312
ior of the final process. As a consequence, one expects thahodel images, and we estimate the expone@j$ andz (q).
H=t(1) so that we will use the estimatedl) as an estimate We then compare these estimates with the valugspfand
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7(gq) obtained in Sect3.3, Fig. 4b—c on 54 EIT Quiet Sun not computed as an estimate of the variance of the estimator for one
images. Figurel shows that estimates from CPC model im- single image.

ages are nearly superimposed onto estimates from Quiet SUI'H the previous sections, we studied the scale-invariance

images. ) ) properties of QS images, and we proposed a stochastic mod-
Second, note that by construction, the Fourier specjing of these images based on compound Poisson cascades.
trum of the 2-D multlfractalz de2n3|ty underlying our syn- jaying evaluated the validity of our model with different in-
thetic image process is'1/k @ wheret(2)<0 so that gicators, it appears that the multifractal modeling of QS im-
2+1(2)<2 (Chainais 2007). As a consequence, the spec- ages can be used as a benchmark when comparing intensities

trum of our fractionally integrated rr1_ode|¢'sl/l§2+f<2>+2H. _at different scales of observations. Such comparison is pre-
Considering all together the 54 simulated images of Siz&isely the aim of the next section.

512x512, the slope of their omnidirectional Fourier spec-
trum is equal to—2.8 which is identical to the value of the
slope computed on the EIT data set. 5 How many pixels from HRI will have a good SNR?

Third, we compare in Figa the histograms of fractionally . ) ) .
integrated compound Poisson cascades, of EIT images, angvo successive increases in resolgtlon are taking plage when
of a lognormal fit on the EIT data set. The three histogramscOMParing EIT at the Lagrange poinl and HRI at perihe-

have the same mean and variance, and are computed on t}l{@n: the first one_is duetoan enhanc_ed pixel angular resolu-
same number of realizations tion, the second is due to a smaller distance to the Sun. One

Both EIT and fractionally integrated CPC histograms ex- needs_ 0 answer the.quest|on: .what proportion of raq!ant
- S . L intensity remains available per pixel after such a magnifica-
hibit a slow decrease for high intensity values, albeit with a

: . . tion?”
different slope. The CPC process attributes too much \.Nelgh¥ Equation ) gives us information about the SNR avail-
to small values, and not enough to large values, while the . . . o ;

o Lo .. able given some experimental conditions, and it is straight-
bulk of the distribution is fairly similar in both cases. Fit- forward to deduce from this equation the radiant intensit
ting 19.5nm EIT intensities with a single distribution has q y

been proved difficult, see e.§letti et al. (2000. Ideally we for a uniform source (Secﬁ.l), and for a point-like source
. . . ) Sect.5.2). However, the quiet corona does not behave as
should constrain the histogram of our simulated CPC |mage§

. .~ a uniform source, nor as a collection of infinitely localized
to be the same as those of EIT images. However bu'ldmgsources y

such a stochastic process with prescribed multifractal spec- Instead, we saw in Sed.that Quiet Sun images exhibit

trum and histogram is an intricate problem. multifractal properties. Therefore, they are highly irregular

Indeed, multifractal properties can be interpreted as joint, 4 can be seen as an intricate superposition of singulari-

properties on the histograms of the image seen at differenfiog \yith finite Holder exponent. This situation is interme-

resolutions. However, not any distribution of probability is diate between a uniform and a dirac signal and we show in
compatible with some given multifractal properties. Trying Sect.5.3what it implies in terms of quality of the observa-
to naively impose such an histogram at some given resolutior@iOns at high resolution

in the model (by simply rescaling the data) disturbs and even We now introduce some notations. LEs) be the radi-
kills the multifractal properties. While it is easy to adapt the ance emitted from an elementary surface of the &urand
histogram of animage to some desired shape, itis much morgy 4 'he the area at the Sun corresponding to one pixel.
difficult to impose scale invariance properties. In the presentryo radiant intensity received by one pixel can be computed
work, we are particularly interested in the extrapolation of asP= [,  L(s)ds. Recall that we are interested in the evo-
the properties of images at smaller resolution. Therefore Wq i fAS“”;P 2 of E the signe “by defini
have chosen to focus on the evolution of the probability den—tl.J |c3,n ? tQh'_ / t" ¢ .thq' @)b( € sign= megr;s dy ? ni-
sity functions through the scale rather than on the SpeCiﬁcaézerﬁt;at IIZVSve(?eIgS highs)urezgrlﬁxilgrfrel\jg.reov)er wgaesssime

tion of the histogram at some particular scale. In Sgaotve .

outline some avenues for succeeding in preserving both th at_ the I_DSF of the instrument adapts exactly to the decrease
histogram and the multifractal spectrum. In pixel size.

Finally, Fig.5 allows to compare visually an EIT image to-

gether with a realization from a fractionally integrated CPC.
The visual aspect _is particularly sens_itive to high intensity\y/hen the angular resolution is increased by a fastoA sun
valu_es. Note that Fichb was obtained dl_rectly from our syn- i givided by a factoiv?, and hence

thesis model without any post-processing of the image. '

5.1 Uniform distribution of intensity

Prr
Remark. Figure4 represents both thgg) exponents and the(q) Prr = /Asun/N2 L(s)ds = N2 (10)

exponents (where the linear trend of they) has been removed) ) )
to make comparisons more discriminating. Error bars reflect theSuppose next that the distangéend the effective aredes
empirical standard deviation of the set of 54 estimates. They arestay constant. The SNR of the high resolution telescope is
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(a) (b)

Fig. 5. Examples of 512512 images ofa) Quiet Sun(b) a fractionally integrated compound Poisson cascade.

penalized by a factaV since 5.3 Multifractal signal

SNR%R We use our data set of 54 images of Quiet sun described
N2 in Sect.2.2 as well as 54 images of size 5312 simu-
Consider now a telescope with a given resolution that getdated with the fractionally integrated CPC process detailed
closer to the Sun. As the distandedecreases, so does the in Sect.4. For all these images we keep only the central part
area sustained by one pixel, hentgdecreases in the same of size 500<500 so as to ease the computations below.
proportion. The radiance being independent on the distance, Our aim is to determine the proportion of pixels having at
the SNR of a uniform source does not change as loeas  high resolution a SNR larger or equal to the SNR available

SNR%—IR =

stays the same. at low resolution, and this for a given increase in effective
o areaAeqf. These pixels will be qualified as “SNR-preserved”.
5.2 Point-like source Recall from Eqs.2-3) that

For a constant distanekg an angular resolution increased by P

a factor NV, and a signal containing one point-like structure, SNR < Aeffﬁ = AeftQ
if both the low and high-resolution pixel contains the same

diracs located atg, we obtain: where P is the radiant intensity. The inequality
Aett HR QHR> At Lr QLR IS Verified as soon as

(12)

Pug = / L(5)3(s — so)ds = L(so) . (11)
Asur/ N2 A
e G o = SSMHR o CLR (13)
which is invariant with respect to the facta¥, hence Aefi LR ~ QHR
SNR;.R=SNRyR.

yvhereG Aeff denotes the gain in effective area. Since the so-
lar corona is not homogenous, EQ.3 is pixel-dependent.
Qpnr is given by the intensity in EIT images (real or arti-

If now a given telescope gets closer to the Sun, a pixel tha
contains a dirac af will receive

— L(s0) ficial). In order to obtainQ g, we start from these images
d? and we derive an appropriate rebinned version that simulates
and hence the SNR increases whiethecreases. a telescope having a smaller angular resolution, or a space-

Table 1 summarizes these well-known situations. Note craft located at a larger distance from the Sun. Naturally, the
that the study of the temporal variability would produce an transition from high to low resolution must match the evolu-
equivalent table, showing the difference between a continution summarized in Tablg.
ous, regular evolution and a highly intermittent one. Tdble The study of the ratioQ; r/QOpr (and hence of a
suggests that 1) observations will always get better when getlower bound forG 4ef) finds its justification under the self-
ting closer, and 2) regions where the source is uniform will similarity assumption: if the scale-invariance observed on
not benefit from an increase in resolution (SNR will be pe- EIT images continues to prevail at sub-pixel scales, the ratio
nalized by a IN factor), but irregular source regions will G 4., will have a similar distribution as soon as the difference
benefit. in resolution considered is kept fixed.
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Let 7, denote a high-resolution image. We term the pixel Table 1. Evolution of the SNR when the distangeo the objective

in this image micro-pixel. As the angular resolution de- changes, and when the angular resolutioncreases by a factay,
creases by a facta¥, a low resolution imagé; is created,  for a uniform source, and a dirac-like source.

for which each pixel, called macro-pixel, contai#$ micro-
pixels fromi;,. We assume that the macro-pixels are disjoint. SNR uniform source  dirac source
We analyze what happens with 1) a change in angular reso-

lution 2) a change in distance to the Sun 3) a combination of d changes, constant ocl/d
both effects. 0 constant

0 changes, x1/N constant
5.3.1 Change in resolution d constant

From Eqg. 2), we see that ifd and Aeff are constant, a

change in angular resolution will impact the SNR through

the radiant intensity? only. SinceP is proportional to the Let o=, whered; (resp.dy) is the distance “far from

area observed on the Sun, the total intensity observed on g,o g p” Zirzesp. “close to the Sun”). Solar Orbiter will get

given area at the Sun must be preserved. as close as.@2 AU at perihelion; this is about five times
We start from an image (real or simulated) at EIT res- coser to the Sun than current telescopes, we therefore illus-

olution, that stands as “high-resolution” image. We then i aie with Fig.7 the case where=5. Note that a closer

construct a Iow-resqlution.im.age by rebinjng _bIocks of size proximity to the Sun may imply to build a telescope with a

N x N such that the intensity in a macro-pixel is equal to the smajier pupil diameter, and hence a reduced radiant intensity.

2 ; : ; : .
sum of N'* corresponding micro-pixels ~ However, we do not discuss this aspect here.
A magnificationN=>5 corresponds to the change in pixel

angular size between EIT and HRI or TRACE; indeed EIT 53.3 Change in distance and in resolution
has a pixel angular size of & arcsec, whereas the one of
HRI and TRACE is of (6 arcsec. We are interested in the
increase in effective area needed to preserve the SNR at hi
resolution. The rati@ s¢ff between the intensity at low reso-
lution (in a macro-pixel) and at high resolution (micro-pixel)
precisely gives this wanted factor coefficient .

Figure6 represents, for a given value of the gain in effec-
tive areaG 4eff, the percentage of pixels at high resolution
that are SNR-preserved. The dotted lines correspond to th
case where only the factof changes.

If a new telescope ha&=5 better a resolution and 15

times larger effective areaG(ye=15), then the simulation If we bring the new telescope (for whiah=5, G 4er=15)

on EIT data shows that out of 1024024 pixels about 1000 five times closer to the Sun. then according to the simulations
pixels are SNR-preserved; this number becomes 300 wher c © . 0 un, ) 'ng imurat
the artificial CPC images are used. WheRe=25 almost using EIT images, B% of the pixels are SNR-preserved.

all pixels keep the same SNR as in the low-resolution image.ThIS figure becomes. 8% when artificial data based on CPC

Note that in the EIT data set there were obvious cosmicmodel are qsed. F|_gur6b and7 show that foragw_eﬂ?Aeff, .
the proportion of pixels that are SNR-preserved is underesti-
rays, that produce a value @f 4¢ff as small as 1.4. The

graphs in Figs6 and 7 represent the results without these n;ate?] bycag)rgﬁmaldCIPg images. This foIIor\]Ns frp|;r]1 the 1I‘act
outliers. that the model does not put enough weight on large

intensity values (often featuring bright points, i.e. dirac-like
structure) as compared to EIT images, cf. the discrepancy ob-
served between EIT and CPC histograms for high intensity
values.

We now simulate a change in distance to the Sun and in reso-
Ytion by two successive rebins. With the first rebin on blocks
of size 5«5, the average pixel intensity is preserved ( mod-
eling thus a larger distance to the Sun). In a second rebin of
the same size 65, the sum intensity is kept constant within
a pixel (simulating a coarser-resolution telescope). Note that
a rebin in one dimension of a factor 25 still falls within the
§cale invariance range shown in Hg.Starting from images
of size 500<500, low-resolution images of size Q0 are
constructed.

5.3.2 Change in distance

From Sects5.1 and5.2 we know that when getting closer
to the Sun, the SNR increases in case of dirac-like signals,

and remains constant for a flat source. In other words, thé-4 Implications for new high resolution telescope

mean value oD over a given area of the Sun stays constant

as the distance Spacecraft-Sun changes. This means that foiur study has several implications for the conceptions of
some pixels the rati6 4, between intensity at low (far from  high resolution EUV telescope.

the Sun) and at high (closer to the Sun) resolution may be In a very high-resolution EUV telescope with fixed expo-
smaller than one, i.e. we may keep constant or even decreaseire time, pixels with low photon counts may contain more
the effective area, and still have SNR>SNR; . noise than signal. In this case, one would need compression
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Fig. 6. Simulation of the proportion of pixels in an HRI instrument at perihelion that will conserve the same SNR as in the case of EIT at L1
(we term these “SNR-preserved pixels”) given a factor of increase of the effective degdimear and(b) semi-logarithmic representation.

Both EIT data (Real) and synthetic data (CPC) are represented in case of 1) a better angular reAekE)p8) a better angular resolution

and a smaller distanc&V(=5, «=5). For a gain in effective area equal to 15%6% of the pixels are SNR-preserved on real EIT data when
N=5, a=5. This figure becomes®% whenG 4¢#=10 only.
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To have a larger dynamical range, one could allow for ex-
posure timed’ that vary according to the photon flux in each
pixel: the less the photon flux(z), the longerT so that
[ ¢ ()dr would ideally be constant for all pixels. The map
of these exposure timé&& would be the output of such a de-
vice Bhm and Lule1998.

To motivate such options the radiometric models will eval-
uate for a given signal the photon counts expected. It is
important, especially for high resolution EUV telescopes to
have an accurate model; and towards this goal it is necessary
to take into account the multifractal nature of the data. In
this respect, the stochastic model proposed here provides a
natural benchmark and a correction factor.

In the 17.1 nm passband, the effective area of EIT is of
the order 102cm?. New technologies will allow an HRI
instrument to have an effective area close to€n?, so
that between HRI and EIT we would have a gain in effective

Fig. 7. Proportion of pixels having a similar SNR at low resolu- area equal to ten approximately. Our study shows that with

tion (far from the Sun) and at high resolutian=5 times closer to G A+=10 about ®% of the pixels in a HRI QS image will

the Sun) for a given change in effective area. When getting closehaye a SNR similar to what is observed on EIT images. If

to the Sun, one may have a reduced effective area and still have @A is increased up to 15,8% of the pixels will be SNR-

. . . eff »

proportion of pixels with preserved SNR. preserved, i.e. about eight times more pixels will have an ex-
cellent SNR. This highlights that a relatively small increase
in instrumental performance may have a large impact on the

algorithms that adapt to the level of signals, viz. that COM- 4 ality of the data.

press more where the SNR is low.

In order to decrease the readout noise in the image, one
possibility is to allow for multiple non-destructive readouts
(NDR) and combine successive NDR valu&inger et al.
2000.
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6 Conclusion and future prospects lution (e.g. EIT resolution or higher) which would capture
as many statistical properties of Quiet Sun images as possi-
Amongst the many challenges faced by high resolution mis-ble. Indeed, Fig4 shows that we have succeeded in building
sions, the precise estimation of photon counts is of funda-synthetic images from multifractal processes that obey some
mental importance. We showed in this paper that an accuratef the scale-invariance properties of Quiet Sun EUV images,
radiometric model must take into account the spatial inho-more precisely that have the same multiscaling exponents.
mogeneities present in the source. However, in Fig.6 we see that the present model underesti-
We first showed how to characterize these spatial inhomomates the proportion of bright (i.e. SNR-preserved) pixels.
geneities through a multifracal analysis of Quiet Sun imagesThis is related to the discrepancy between the histograms of
We computed the multifractal spectrum and derived a set ofeal and artificial EIT images observed for high intensity val-
parameters, namely the multiscaling exponents, that quantisies. Indeed, our proposed model captures the self-similar
tatively describe the scale invariance properties. We then proand multifractal nature of Quiet Sun images, but does not
posed a family of stochastic processes that obey the same sttake into account other constraint such as the distribution of
tistical property with the same set of parameters, thus injectintensities in EIT images.
ing minimum a priori in the model. This establishes firmly  In future work, we plan on exploring two alternatives to
the spatial scale-invariance structure of EIT images. obtain a model that would both preserve the histogram ob-
Next, we compared a set of images (real and simulated viserved at a given resolution and satisfy the multifractal prop-
the above stochastic process) at EIT-resolution with an aperties. The first one is to find a way to constrain the synthetic
propriate rebin of these images. The rebin is done so as tprocesses to comply with some properties on their marginal
simulate a larger angular resolution, and a larger distance tdistributions (like e.g. intensity histograms) as well as with
the Sun. By comparing the intensity values at low and highthe desired scale invariance properties. The difficulty here
resolutions, it is possible to estimate the needed gain in efeomes from the fact that the multifractal spectrum strongly
fective area such that the SNR at high and low resolutionsconstrains the global structure of stochastic process. Hence
remains the same. If the scale-invariance observed at suprdihere are few degrees of freedom left to further adopt other
pixel scales on EIT images continues to prevail at smallercriteria. This issue remains thus an open question for mathe-
scales, the distribution of this ratio will be the same whenmaticians. The second possibility, more empirical, is to build
comparing current low resolution EIT images with future higher resolution images from low resolution images. The
high resolution images. In this sense, we provided a proxychallenge here is to extrapolate e.g. EIT images at higher res-
for the needed gain in effective area for HRI telescopes. olution using the scale invariance properties. In this case, the
With the new technologies, the future HRI instrument will real image would serve as a boundary condition of the model,
have an effective area which is approximately 10 times largeand by construction the histogram of the low resolution im-
than the one of EIT. In this case, our study shows that abougage would be preserved.
0.2% of the pixels in a HRI QS image will have a SNR sim-
ilar to what is observed on EIT images. However, if the ef-
fective area of HRI becomes 15 times larger (instead of 10Appendix A
times), about 6% of the pixels (i.e. eight times more pixels)
will have an excellent SNR. Hence a relatively small increaséMultifractal formalism and Legendre transform
in instrumental performance may have a large impact on the
quality of the data. Multifractal analysis aims at the characterization of the reg-
The results presented in this paper are based on images §farity of measures, functions or graphs of realizations of a
the warm corona. X-ray images of the hot corona are likelyStochastic procesSdffard 1997). Often, one quantifies the
to exhibit a more pronounced spatial intermittency; a similarPresence of singularities in an image thanks to the multifrac-
analysis on X-ray images should therefore conclude that 42! spectrumD(h), whereh is the so-called Bider expo-
smaller gain in effective area is needed. As a general conclulent. In brief, f(x) is said to be locally Kider regular with
sion we can say that 1) all other things being equal, the qual€XPonent:(x,) atx, if h(x,) is the highest exponent such
ity of observations will improve when getting closer to the that there exist a polynomiaf (x) and a constanC with
surl; 2) regions where the source is uniform will be penal- |/ )= Px, (X—=X,)|<C|x—X,|" for x in a neighborhood of
ized by an increase in angular resolution, but irregular sourceo- The multifractal spectrund (k) is defined as the frac-
regions will benefit from such an increase. tal dimension of the se, |(x,)=h}. It can be defined for
In order to help improve current radiometric model, our & measure or for a function. . o
next goal is to generate synthetic images at arbitrary reso- [N practice, estimation oD (r) from its definition is nu-
merically unstable. An alternative approach is to consider
IHowever, as said before, a closer distance to the Sun mighthe scaling behavior of the structure functicf(g, a). More
imply to build a telescope with a smaller pupil, and hence a reducedprecisely, we look at the multiscaling exponegtg) such
radiant intensity. that S(g, a)~a%“@, see e.gYordanova et al(2004. The
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multifractal formalism is established when one can associatéi.i.d.) non negative random variables called “multipliers”;
the multifractal spectrunD(h) to its Legendre transform (x;, ;) is a Poisson point process REx [¢, 1] with density
Z(g) (in dimension 2): dm(x,r) = (4/7r3dxdr; the function f (x)=l[_1/2,1/2](X)

in the basic definition can be replaced by some compact sup-
¢(g) =2+ ir}}f[qh — D)) & Dh) =2+ igf[qh —¢(q)] ported non negative functionlldenotes the indicator func-

tion over the seft). The integration kernef plays the role of

(A1) ; o ;

some geometrical object in the image. It may also be used to

The exponents(¢) reflect the multiresolution statistics of a attenuate small scales discontinuities or to take into account

processCastaing et al199Q Castaing and Dubruljd995. ~ Some geometrical features of the images under study.
It is used in Sect4 as a set of parameters for modeling pur-  In the limit£—0, compound Poisson cascades are the den-
pose. sity of a scale invariant multifractal measure characterized by

a set of multiscaling exponentz{q):q(EW,-—1)+1—EW1.’1
(E denotes expectation), at least within a certain rangg of

Appendix B see Eqs.&-9) in Sect.4.3 Thus, the design of som&q)
_ . function for modeling purpose reduces to the choice of the
Synthesis of multifractal process distribution of the multipliersw;.

An interesting property of the procegk (x) is that it can
be interpreted as the intensifyx) resulting from the scat-
ering of a uniform light by a random superposition of trans-
arent cylinders of sizeg;} placed above positions;} and
ith i.i.d. random transparencly;. The centers; of the
cylinders are uniformly distributed on the plane; the ragii
are distributed by a scale invariantr® law; the distribu-
tion of the transparencigd; is determined by the choice of
the functionz (¢) which is directly associated to their second
generating function. The intensity of one pixel is therefore
the product of the transparencies of the cylinders: this is a
’(q) =qH +1(q). (B1) multiplicative cascade. This presentation points to the re-

o . o semblance between CPC and other classical approaches in
This is c_onnect.ed to the fact that the d|ffer_ent|at|qn of ajmage modeling where elementary objects of random sizes
Holder singularity of exponent becomes a singularity of  re gistributed in space following a Poisson point process

exponent:—1 while its integration yields a singularity of ex- (Srivastava et a12003. SeeChainai2006 2007 for more
ponentz+1 (Mallat and Hwang1992). It is then natural to  yetails.

consider the modeling of Quiet Sun images ag k1 fil-
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