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Abstract Solar telescopes will never be able to resolve the smallest events at their intrinsic
physical scales. Pixel signals recorded by SOHO/(CDS, EIT, SUMER), STEREO/SECCHI/
EUVI, TRACE, SDO/AIA, and even by the future Solar Orbiter EUI/HRI contain an in-
herent “spatial noise” since they represent an average of the solar signal present at subpixel
scales. In this paper, we aim at investigating this spatial noise, and hopefully at extracting
information from subpixel scales. Two paths are explored. We first combine a regularity
analysis of a sequence of EIT images with an estimation of the relationship between mean
and standard deviation, and we formulate a scenario for the evolution of the local signal-to-
noise ratio (SNR) as the pixel size becomes smaller. Second, we use an elementary forward
modeling to examine the relationship between nanoflare characteristics (such as area, dura-
tion, and intensity) and the global mean and standard deviation. We use theoretical distribu-
tions of nanoflare parameters as input to the forward model. A fine-grid image is generated
as a random superposition of those pseudo-nanoflares. Coarser resolution images (simulat-
ing images acquired by a telescope) are obtained by rebinning and are used to compute the
mean and standard deviation to be analyzed. Our results show that the local SNR decays
more slowly in regions exhibiting irregularities than in smooth regions.
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1. Introduction

Future missions such as Solar Orbiter (SO) aim at studying the Sun from closer than ever.
It is expected that the High Resolution Imagers (HRI) onboard SO will have a pixel size
of 0.5 arcsec and a cadence better than one second (Hochedez et al., 2001). When the SO
mission is at perihelion (i.e., at a distance of 0.2 AU from the Sun), one pixel of HRI will
represent approximately (80 km2) on the Sun. Note that 80 km corresponds to a pixel size
of 0.1 arcsec for an instrument located at 1 AU.

Under these conditions it is unclear whether there will be enough photons per pixel to
illuminate the detector and whether the signal-to-noise ratio (SNR) will be sufficient. It is
thus necessary to quantify the expected level of SNR, and more generally to provide tools
for extracting information from subpixel scales. We propose two ways to get new insights
into this issue.

First, the analysis of a high-cadence data set recorded by the EIT instrument (Delabou-
dinière et al., 1995) on 4 October 1996 allows us to describe how the local SNR evolves as
the scale of observation (or pixel size) becomes smaller. We show that the decrease in SNR
as the resolution gets finer is not the same when the spatial fluctuations of the radiance are
taken into account or when a uniform radiance is considered. Indeed, the photon emission
process can be modeled by a Poisson distribution Po(L), where L represents the radiance.
If the emission of the solar corona were uniform over the entire Sun, we would have an
homogeneous Poisson process. Denoting by μa the mean intensity recorded and by σa the
corresponding standard deviation (STD), we have that the SNR would simply linearly de-
crease as a function of the scale (a) of observation: μa/σa ∼ a. Fortunately, different parts
of the corona have different levels of emission; that is, the photon flux that hits the detector
at a particular location (x) during an exposure time (T ) follows an inhomogeneous Poisson
distribution Po[L(x, T )], where the radiance L is space and time dependent. Let us consider
that L(x, T0) = f (x)L0 for some given exposure time (T0), with L0 a constant and f (x) a
function describing the inhomogeneities in a solar coronal image. Our purpose is to study
how the local variations of f (x) influence the local SNR.

In the second part of the paper, we propose a basic forward modeling technique that
takes as input different distributions of flare characteristics proposed in the literature
(Crosby et al., 1993; Isliker et al., 2001; Krucker and Benz, 1998; Paczuski et al., 2005;
Vlahos et al., 1995). We emulate the instrument response through rebinning. The forward
model gives as output the average (μa) and standard deviation (σa), computed either over
space or over time. We confirm that the relationship σa = b0μ

b1
a prevails, similarly to what

is observed in real data, and we investigate how the coefficient b1 is influenced by pseudo-
nanoflare distribution parameter values.

This paper is organized as follows: Section 2 recalls the various sources of noise that
impact the quality of EIT images and explains how to access subpixel information by us-
ing a high-cadence EIT data set. Section 3 introduces our forward modeling approach and
presents the results of the corresponding simulation study. Finally, Section 4 places our work
in perspective with other studies on noise in solar images and gives prospects for future re-
search.

2. EIT Data Set Analysis

The aim of this section is to estimate subpixel variability within a high-cadence EIT se-
quence. We begin by recalling the main sources of error present in EIT images.
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2.1. Sources of Noise in EIT Images

The incident EUV flux of interest on EIT is converted in digital numbers (DN) through a
series of steps. At each step, some noise may be introduced. In brief, the beam of photons
impinges the optical system where the optical point-spread-function (PSF) acts as a blurring
operator. Simultaneously, a spectral selection is performed on the signal before it reaches
the CCD detector. The latter has a heterogeneous response across its surface. Finally, the
camera electronics convert photon counts into DN; this conversion adds the read-out noise.

2.1.1. Poisson Noise

The photon emission processes in the solar atmosphere are random and incoherent in na-
ture. They are usually modeled by a Poisson process so that the number of incident photons
between t and t + T obeys a Poisson law Po[L(x, t, T )] of mean L(x, t, T ), where the ra-
diance L is space and time dependent. When L is sufficiently large (L > 1000), the Poisson
distribution may be approximated by a Gaussian. Lower photon counts give higher variance
with respect to the mean and hence smaller SNR. Let N(x) denote the number of photons
that hit the detector at location x, time t0, and during an exposure time T0. N(x) is mod-
eled by a Poisson random variable distributed as Po[L(x, t0, T0)]. The recorded signal S(x)

measured in DN at location x is equal to (Defise, 1999; Janesick et al., 1985)

S(x) = qN(x), q = QE · ηi · 1

G
, (1)

where QE is the inner quantum efficiency (in number of detected photons per incident pho-
ton), ηi is the ideal quantum yield (in electrons per detected photon), and G is the electronic
gain (in electrons per DN).

Since N(x) can be viewed as a realization from a random variable, so is S(x). Its mathe-
matical expectation denoted by E[S(x)] is equal to μ(x) ≡ E[S(x)] = qL(x). The variance
of S(x) is given by

σ(x)2 ≡ Var
[
S(x)

] = q2Var
[
N(x)

] = q2L(x) = qμ(x). (2)

In summary, if one assumes that the detector does not introduce any other fluctuations be-
sides the Poisson randomness, the local mean and standard deviation are related by

σ(x) = q1/2 μ(x)1/2. (3)

2.1.2. Blurring from the PSF

The EIT telescope has a pixel size of 2.6 arcsec (1.8 Mm at the center of the Sun). The total
PSF of the instrument is the combination of the optical PSF and the pixel shape. The opti-
cal PSF of EIT has a full-width-at-half-maximum (FWHM) of less than one pixel (Defise,
1999), and by convolution with the square pixel shape, one can deduce the angular resolu-
tion of the instrument on the solar disk. This convolution is close to the nominal 2.6 arcsec
angular size of the pixel; see Delaboudinière et al. (1995). The signal recorded by one pixel
thus corresponds to an average of the photon counts on a well-defined area. Two distinct
structures separated by a distance smaller than the instrument PSF width will be mixed.
With EIT, the smallest detectable wavelength for a periodic spatial feature is 3.6 Mm. This
is the origin of the discussed “spatial noise.” DeForest (2007) made a precise study of the
averaging effect on loop structures observed with EIT and TRACE. The goal of this sec-
tion is to use a high-cadence data set to try and recover some information about the spatial
modulation of the signal that has been averaged by the PSF.
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2.1.3. Flat Field

The CCD detector exhibits inhomogeneities in the response. A map of these inhomo-
geneities, called the flat field (FF), has been estimated, and the eit_prep procedure of the
Solar Software library ssw: http://www.msal.com/solarsoft/ corrects for this nonuniformity.
If, however, this correction is biased, the “true” signal S∗ will be recorded as S = S∗ + εS∗,
where ε is the relative bias in the FF correction estimate. This bias ε = ε(x) fluctuates in
space, so it can be considered as a random noise. Because of this bias, the recorded signal
[S(x)] corresponding to an ideal flat, uniform source [S∗(x) = S0] will exhibit a linear rela-
tionship between its spatial mean and standard deviation. This can be shown as follows. Let
us consider a small neighborhood [N (x)] of some point (x). The spatial variance of S over
N (x) is

VarN (x)(S) = S2
0 VarN (x)(ε). (4)

Hence the relationship between spatial mean (μ) and standard deviation (σ ) of the signal
(S) over N (x) is equal to

σ = kFF(x) · μ, (5)

where kFF(x) = √
VarN (x)(ε) is called here the flat-field noise factor, which varies from one

pixel to another. This reasoning generalizes to nonuniform S∗ �= S0 as long as the intensity
in the neighborhood stays fairly uniform. For highly varying photon counts, the influence of
ε becomes negligible with respect to solar variability.

2.1.4. Read-out Noise

The electronics that converts photon counts to digital number generate a read-out noise of
Gaussian nature. Its standard deviation can be estimated but its influence becomes important
only for small values of the radiance. Finally, the thermal noise (variability of the dark
current) originates from the fluctuations of charges generated electronically. However, at
EIT operational temperature, it is negligible.

2.2. Method

We consider the Joint Observing Program (JOP-020) recorded by EIT on 4 October 1996 in
the 19.5-nm bandpasses. This JOP was dedicated to the observation of nanoflares. It consists
of 89 images of size 128 × 192 pixels with one-minute cadence. One pixel corresponds to a
surface of (1800 km)2 on the Sun. We consider level-1 images, preprocessed and calibrated
through the eit_prep procedure of the ssw library.

We make use of this high-cadence data set to estimate subpixel variability (sometimes
called an “aliasing effect”). To this end, we use time-average estimates of the mean and
standard deviation computed at each pixel. Indeed, proceeding on a pixel-by-pixel basis
ensures that the subsequent results are not contaminated by the flat-field noise. Moreover,
the one-minute cadence gives access to subpixel information that is masked by the averaging
effect of the PSF in individual images: The solar rotation induces a displacement of one pixel
in the horizontal direction every 15 minutes in EIT images; there is thus a displacement of
about 1/15 of a pixel per minute. Hence the mean and STD computed on temporal windows
of 15 minutes give us insight into the subpixel spatial statistics, as well as into the temporal
variability.



Spatial and Temporal Noise in Solar EUV Observations

The JOP sequence shows bright points together with more uniform areas (see Figure 1).
These two types of structures are likely to behave differently at subpixel scales: Bright points
will typically evolve more quickly than uniform regions showing few signs of activity. Hence
we consider separately these two types of regions, as explained in Section 2.3. Section 2.4
proposes a regularity analysis of the data set and shows how it allows us to give scenarios
for the evolution of the local SNR and mean–STD relationship across scales.

2.3. Regularity Analysis Using Pointwise Hölder Exponents

To distinguish between regions of high and low regularity in a signal (g), it is customary
to compute the pointwise Hölder exponent (h) at each point (x0). This exponent precisely
characterizes the local regularity: a function g is Hölder regular with exponent h(x0) at some
point x0 if |g(x) − g(x0)| ∼ |x − x0|h(x0) for x in the neighborhood of x0.1 If the function is
locally C∞ in a neighborhood of x0, then h(x0) = +∞. If the function is locally similar to
a δ-function, then h(x0) = 0. If h(x0) ≥ 1, the function is at least first-order differentiable.
In broad terms, the smaller h(x0) is, the more singular the image around x0 will be. The
Appendix provides a precise definition of h(x0).

In Delouille et al. (2005), we used a local scale measure computed with the Mexican Hat
wavelet transform to estimate the local Hölder exponent. In the present paper, we choose
to compute each h(x0) through a series of bivariate regressions on spatial windows of in-
creasing sizes. The signal g considered is not the gray-level pixel value of the image, but
rather the cardinal of the largest subset of pixels having the same gray level. With this imple-
mentation, values for the Hölder exponents range between zero (where the signal behaves
like a δ-function) and two (where the signal is twice differentiable). The FracLab software
(http://www2.irccyn.ec-nantes.fr/FracLab/; Véhel and Legrand, 2004) was used to compute
the values of h.

Figure 1 shows the image recorded by EIT on 4 October 1996 at 07:39:10 in the 19.5-nm
bandpass, together with its map of pointwise Hölder exponents. In our analysis to follow,
we discard pixels with Hölder exponent less than 0.2. Therefore cosmic-ray hits, which
typically behave like discontinuous δ-functions, are not taken into account.

Figure 1 (a) Image from JOP nanoflares data set taken on 4 October 1996 at 07:39:10 (in logarithmic scale).
(b) Map of local Hölder exponents computed from the corresponding linear image.

1Here “∼” denotes an asymptotic proportionality as x → x0.
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2.4. Signal-to-Noise Ratio and Relationship between Mean and Standard Deviation

We distinguish two sets of pixels with different regularities: one set of pixels where the
image is somewhat smooth and the other where it is more singular. The first set contains all
pixels for which the Hölder exponent is greater than 1.6 (smooth regions), and the second
set contain all pixels for which the Hölder exponent is smaller than 0.6 (singular regions)
but larger than 0.2 (to avoid cosmic rays).

We are interested in the fluctuations of the intensity measured by a pixel of size a lo-
cated at x0. For an homogenous Poisson process of intensity L observed at scale a, it is a
classical result (Snyder and Miller, 1991) that the mean intensity measured in one pixel is
μa = La2 and the variance is σ 2

a = La2 and so σa = μ
1/2
a . In this case, one usually defines

a signal-to-noise-ratio by SNR = μa/σa = √
La ∼ a. By analogy, we focus on the relation-

ship between the temporal mean [μa(x0)] and the standard deviation [σa(x0)] of the function
f at some given position (x0) observed at resolution a. The purpose of the present analy-
sis is to get insight into the evolution of the SNRa(x0) = μa(x0)/σa(x0) as the resolution a

changes. As already stated, we estimate μa and σa for each pixel separately by averaging
the observed pixel values over nonoverlapping temporal windows of 15 minutes. Since the
rotation induces a displacement of one pixel in 15 minutes, our statistics actually cover an
area equivalent to two pixels. Hence this technique allows us to see what happens at scales
below two EIT pixels, that is, at subresolution scale.

To extract the predominant relationship between the observed μa and σa , we compute
the two-dimensional (2D) histogram of (logμa, logσa). In Figure 2, this histogram is rep-
resented in gray levels: Brighter values at coordinate (logμ0, logσ0) indicate more pixels
in the original data set for which μa = μ0 and σa = σ0. In other words, Figure 2 provides
an estimate of the 2D probability density function of the vector (logμa, logσa). In Fig-
ure 2a the 2D density estimation of (logμ, logσ) corresponds to pixels in singular regions
[h(x0) ≤ 0.6], whereas Figure 2b shows the 2D density for pixels belonging to smooth re-
gions [h(x0) ≥ 1.6]. We computed these 2D densities as a succession of 1D density function
estimations of the standard deviation (represented in the y-axis). Each 1D density estimation
is carried out on a slice of width �μ equal to log(�μ) = 0.016 (in DN s−1). For each slice,
we compute the mode (i.e., the maximum) of the 1D density function of the standard de-
viation. Next, we estimate the line (logσa = k + b1 logμa) that fits these modes. The slope

Figure 2 Density estimation for (logμ, logσ) for (a) pixels having a Hölder exponent less than 0.6 (rep-
resenting singular regions) and (b) pixels having a Hölder exponent larger than 1.6 (representing smooth
regions). The value of the slope is equal to 1.3 in (a) and to 0.7 in (b).
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(b1) obtained by the least-squares method is equal to 1.3 in the case of singular regions ver-
sus 0.7 for smooth regions. Note that it is not possible to disentangle spatial from temporal
variability in the interpretation of these values. Although we keep in mind that both types of
variability might be present, for the sake of clarity we omit in the notation in the following
the temporal dependence of the intensity f .

The standard deviation, or intensity fluctuations, at scale a and location x0 can be ap-
proximated as

σa(x0) ∼ ∣∣f (x0 + au) − f (x0)
∣∣, (6)

where u is any unitary vector. As a direct consequence of the definition of the Hölder expo-
nent h(x0), we then have σa(x0) ∼ ah(x0). The local Hölder regularity helps us in providing
a scenario for the evolution of the local SNR as follows.

In smooth regions, the image is rather regular and neighboring pixels have similar values,
close to a constant f (x0) times the pixel area. Therefore, the mean value observed at scale a

around x0 is roughly proportional to the surface of the pixel, so μa(x0) ∼ a2 or equivalently
a ∼ μa(x0)

1/2. As a consequence, for h(x0) close to 1.6 [recall that 1.6 ≤ h(x0) < 2] we
obtain a μ − σ relation of the type

σa(x0) ∼ a1.6 ∼ μa(x0)
1.6/2 ∼ μa(x0)

0.8. (7)

The 0.8 exponent is close to the observed σa ∼ μ0.7
a and is greater than the 1/2 exponent

that would be observed for a homogeneous Poisson noise. Notice that the Hölder exponent
was computed on the original image by using scales above the pixel size, whereas the slope
b1 is representative of the evolution at subresolution scale. Under the approximation (6), the
value of the Hölder exponent can be related to the slope b1; this suggests that there is some
consistency between the evolution at super- and subpixel resolution.

Considering now the SNR, one would expect that

SNRa(x0) = μa

σa

∼ a2−1.6 ∼ a0.4 (8)

in such regions. As a consequence, the SNR defined above would go to zero as a0.4 (as
a → 0). This is yet slower than the usual property of Poisson noise for which SNRa ∼ a.

In singular regions for which h(x0) < 0.6, the singularity corresponds to either a local
minimum or a local maximum. We observe that the value of μa is about twice as large
(log10 2 ≈ 0.3) in singular regions (h < 0.6) as in smooth regions (h > 1.6) (see the values
of logμa in Figure 2a, which range from 2 to 2.5, compared to Figure 2b, where they range
from 1.8 to 2.3 for smooth regions). Thus these singular regions correspond mostly to local
maxima.

As a consequence, the intensity in regions where h(x0) < 0.6 is peaked: The extreme case
would be that of a δ-function, where the intensity would be infinitely concentrated at some
unique position. Therefore, the mean (μa) is dominated by some extreme value associated
with a small region of emission. Then one would expect that μa ∼ aε(x0) with ε(x0) < 2
(if the image is locally a δ-function, μa is constant, and ε = 0); equivalently, one then has
a ∼ μ

1/ε
a . Hence for h(x0) � 0.6 we get

σa ∼ a0.6 ∼ μ0.6/ε
a ∼ μ1+β

a , (9)

where β > 0 as soon as ε < 0.6. This argument is consistent with the observed value of
b1 = 1.3 = 1 + 0.3 [which would typically correspond to h(x0) = 0.6 and ε = 0.46].
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For the SNR, one would expect for such singular regions that

SNRa = μa

σa

∼ aε−0.6. (10)

Therefore, in the particular case when ε < 0.6, one would even get that SNRa → ∞ as
a → 0. Locally, at places where there are δ-function structures, the SNR would increase as
the scale becomes smaller. In practice, the limit a → 0 needs to be considered with caution
in the present approach. Our argument remains valid only when the scale of observation
remains much greater than the typical scale of the singular object we focus on. As soon as
the resolution becomes sufficient to resolve an elementary object, it will appear as “smooth”
rather than “singular.” The singularity or smoothness of a region is a notion relative to the
scale of observation. The argument here simply tells us that one may expect some gain, or at
least a slow decrease, in SNR as the resolution gets finer around regions that appear singular
at the present scale of observation; for example, if h(x0) = 0.6 and ε < 1, the SNR will
decrease following a power law with exponent smaller than 0.4 as a → 0.

This qualitative study suggests that modeling images of the Sun by some homogeneous
Poisson process leads to a pessimistic prediction of the evolution of the local SNR when
decreasing the scale of observation, that is, when observing at a finer resolution. The use
of a uniform intensity for the Poisson process neglects the spatial fluctuations of the emis-
sion coming from the Sun. Taking into account the local regularity of the image by using
the Hölder exponent allows us to make more precise predictions about this evolution: The
resulting prediction is less pessimistic since we get SNRa ∼ aγ with γ < 1 in place of the
usual SNRa ∼ a (γ = 1) predicted by the Poisson-noise model. The more singular the re-
gion of interest is, the slower will be the decrease in SNR as the resolution gets finer. This is
important information for assessing the quality of forthcoming high-resolution observations,
since these might be threatened by the SNR decreasing too fast as the resolution gets higher.
In particular, in the context of the SO mission, radiometric models assessing the number
of photons available per pixel at HRI resolution should take into account the spatial and
temporal fluctuations of the radiance.

3. Forward Modeling Approach

In this section, we model the solar corona as a superposition in space and time of a large
number of flarelike events, characterized by their surface, duration, intensity, and localiza-
tion. Having fixed a probability distribution function for these quantities, we generate a time
series of images. We then compute the mean (μ) and standard deviation (σ ), either in space
(over the whole image) or in time (over the whole sequence). In both cases, we estimate the
parameters (b0, b1) of the model σ = b0μ

b1 . We repeat this operation for several values of
the power-law index characterizing the distributions of flarelike events. We then relate the
value of b1 to these indices. This allows us to identify which flare characteristics (area, dura-
tion, and/or intensity) most influence the relationship between mean and standard deviation.

The spatial and temporal resolution of the fine-grid data sequence corresponds to the
expected resolution of HRI at perihelion, namely a pixel size of (80 km) and a cadence of
one second. This is approximately five times better spatial resolution than what the TRACE
instrument provides and a 25 times enhancement as compared to the EIT telescope.
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3.1. Generation of the Data Sequence

We begin by describing how to generate a flarelike event. To handle the simulation within
a reasonable time scale, we simplify the physics and especially the behavior of the cooling
phase: An event is a cube with a constant intensity within a given spatial and temporal
window and a zero value outside. In future studies, we plan on using more sophisticated
models for the time evolution of an event.

We need to choose a probability distribution for the area, duration, and intensity of
an event. Past measurements of bright events point at scale invariance of these three
characteristics; their distribution is therefore usually modeled by a power law (see, e.g.,
Crosby et al., 1993). In our simulation, the area (A), duration (D), and intensity (I ) charac-
terizing an event follow such a power-law distribution:

p(A) ∝ Aα, p(D) ∝ Dτ , p(I) ∝ I γ , (11)

where p(x) denotes the probability density function of the quantity x.
Different values for (α, τ, γ ) are proposed in the literature. Values for the power-law

index of the peak flux (γ ), or emission measure, differ the most: Aschwanden and Parnell
(2002) observe values ranging between −1.75 and −1.94 for the peak flux in TRACE and
Yohkoh/SXT, whereas Crosby et al. (1993) provide a value of −1.59 for the peak HXR
flux power slope. However, Parker’s hypothesis conveying the idea that the solar corona
could be heated by a multitude of nanoflares needs a slope of at most −2 for the thermal
energy content. Krucker and Benz (1998) give a value of γ ranging between −2.6 and
−2.3; avalanche models produce a slope of −2.4 (Viticchié et al., 2006) and even −3.5 for
the smallest flare (Vlahos et al., 1995). Studies exploring the values for the power law of
the area, α, include that of Aschwanden and Parnell (2002), who derived values of −2.45
and −1.86. Finally, values for the duration index τ range from −1.95 (Crosby et al., 1993)
to −8 (Paczuski et al., 2005) and even −11 (Vlahos et al., 1995) for small flares. To be
consistent with these different results, we explore all combinations of values for α, τ, γ

given in Table 1.
We now specify the range of values for A,D, and I , as well as their relationships. Bergh-

mans et al. (1998) used a one-minute cadence data set recorded by EIT on 28 December
2006 and found that the area and duration of a brightening are almost linearly correlated in
a log – log plot. However, the typical duration of an 80-km event is unclear. Lin et al. (1984)
reported X-ray microflares lasting from a few seconds to several tens of seconds and having
a power-law energy spectra. Golub et al. (1989) computed ionization times of the order of
two to four seconds for the Fe IX, Fe X, and Fe XI ions, whereas the cooling time was of the
order of several minutes. We decided to choose intervals of values for the area and duration
that are compatible with a straightforward extrapolation of the results in Berghmans et al.
(1998). Areas range between 0.0064 and 100 Mm2 (covering from 1 to 1252 pixels in the fine
grid), and the duration of an event may last between one second and five minutes. This sim-
plified setting is easily implemented, but in a further study, we plan to consider other types
of extrapolations of the distribution of events at smaller scales and to take into account the
exponential decay of the cooling phase. Finally, the intensity (in arbitrary units) is allowed
to span five orders of magnitude, in agreement with the results of Aschwanden and Parnell
(2002) on the relationship between area and intensity. Table 1 summarizes these ranges.

The “high-resolution” data sequences contain 300 temporal frames, each with a spatial
extent of 500 × 500 pixels. They are simulated as the superposition of a large number (N )
of events, so that the entire space is filled with events. An event is modeled as a cube in
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Table 1 Power-law indices and ranges for the area, duration, and intensity considered in the simulation.

Power-law index Range

Area α ∈ {−1.5,−1.6,−1.9,−2.9} [0.0064 – 100 Mm2] or [1 – 1252] pixels

Duration τ ∈ {−2.1;−2.5;−4,−8} [1 – 300 s] or [1 – 300] frames

Intensity γ ∈ {−1.6;−1.8;−1.95;−2.3;−3.5} [1 – 105] (arbitrary units)

Table 2 Coarsening factors operated in the simulation.

Data cube Spatial dimension (in pixels) Time dimension ρ: size generated/size rebin

(number of frames)

Generated 500 × 500 300 1

Rebin 1 100 × 100 5 1500 (≈ TRACE)

Rebin 2 20 × 20 5 37500 (≈ EIT, 1-min cadence)

the spatio-temporal dimension: It has a constant intensity within this data cube and a zero
intensity outside. The data sequences are generated as follows:

1. Choose a particular combination of values for α, τ, and γ .
2. Using the prescribed power-law distributions (index value and range), generate N values

for A,D, and I .
3. Rank the N values generated for A,D, and I by increasing order. A flarelike event is

characterized by the triple (A(k),D(k), I(k)), k = 1, . . . ,N , where X(i) denotes the ith
element of the order statistics of X (i.e., X(1) ≤ X(2) ≤ · · ·). With this ordering, an event
with small area will have also a small duration and intensity.

4. Generate the localization in space and time of the N events as independent samples from
a uniform distribution.

5. Obtain the data sequence by superpositioning the N events.

Note that, in the third step, we do not impose a deterministic relationship among A,D,
and I . Indeed, there is a large dispersion around the linear fit between area and duration
of observed brightenings (cf. Berghmans et al., 1998). This means that there is a range of
possible durations for a given event size.

We consider three values for the number of events generated: N = 105, 107, and 5×107.
For each of these three values, we generate two data sequences. In total, for a given set of
parameters (α, τ, γ ), we thus generate six data sets.

From the high-resolution data cube, we derive two coarser resolution data sets that reflect,
respectively, TRACE and EIT resolution: A rebin by a factor five in space and 60 in time is
close to the specifications of TRACE, whereas a rebin by a factor 25 in space emulates EIT’s
spatial resolution. These two rebinning factors (ρ) are displayed in Table 2. Recall that the
spatial rebin emulates the PSF operator, which is assumed here to be a step function. The
temporal rebinning simulates the integration over time during an image acquisition.

A pixel in a rebinned image is termed a “macro-pixel.” Because the localization of each
event is generated randomly, there will be a different number of events in each macro-pixel.
This introduces another source of variability: When averaging to obtain the rebinned im-
age, the sum is performed over a random number of events in each macro-pixel. Figure 3a
shows one realization with N = 105 events and the smallest power-law indices in absolute
value (α = −1.5, τ = −2.1, γ = −1.6). This setting generates values for the area, duration,
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Figure 3 Example of one realization, with N = 105, α = −1.5, τ = −2.1, and γ = −1.6. (a) A high resolu-
tion image; (b) the corresponding image rebinned by a factor of 25 × 25 in space and 60 in time. The values
of the intensity are in arbitrary units.

and intensity that cover a large range. Structured regions appear as a consequence of the
superposition of events of diverse sizes. These fine structures are largely smoothed out in
the rebinned version displayed in Figure 3b.

3.2. Phenomenological Model

For each coarse-resolution data set, the following quantities are considered: μS and σS are
an average (over time) of the mean and STD computed over space on each frame of the
sequence; μT and σT are an average (over space) of the temporal mean and STD computed
for each pixel. We summarize the six values of the same combination of (α, τ, γ,ρ) by
estimating the slope and intercept of a linear regression between log(σ ) and log(μ):

logσS = b0,S + b1,S logμS, (12)

logσT = b0,T + b1,T logμT. (13)

All the linear regressions done to estimate (b0,S, b1,S) and (b0,T, b1,T) have a R2 goodness of
fit larger than 0.96.2 We may thus consider that the model σ = b0μ

b1 is valid.
We model the slopes b1,S and b1,T as a function of α, τ , γ , and ρ to see which parameters

have the most influence on these slopes. We do not analyze the behavior of the intercept b0

since this quantity is not based on any physical model and cannot be physically related to
observations. We consider a simple linear model for b1,T and b1,S:

b1 = c0 + c1α + c2τ + c3γ + c4ρ + ε. (14)

Variables are standardized before entering the model: They are centered and divided
by their half-range. This facilitates the interpretation of coefficient values c: The constant
parameter c0 gives the response value at the center of the hypercube (i.e., for a mean value
of α, τ, γ , and ρ). The coefficient before a variable X in the model indicates an average
increase of the response when X increases from the center of the domain to its maximum.

2The R2 statistic, R2 ∈ [0,1], is the ratio between the variance explained by the model and the total variation

the observations. R2 = 1 means that the model fits the data perfectly (Chatterjee and Hadi, 1986).
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Table 3 Coefficient values and standard deviations for the linear models explaining the responses b1,S and
b1,T, respectively. NS stands for “nonsignificant”: A star in this column indicates a parameter that can be
omitted in the model at the 0.05 level. The slope b1,S is mostly driven by the power-law index for the area,
whereas the duration influences b1,T the most.

Variable b1,S STD(b1,S) NS b1,T STD(b1,T) NS

CONST 0.756 0.0055 0.709 0.0100

α 0.156 0.0070 0.056 0.0126

τ 0.022 0.0070 0.172 0.0126

γ −0.001 0.0078 * −0.016 0.0140 *

ρ 0.008 0.0055 * 0.012 0.0100 *

R2 statistics 0.57 0.91

3.3. Results of the Simulation Study

Table 3 shows the estimation of the regression coefficients ci in Equation (14) together with
an estimate of their uncertainty. We entered in the model the values ρ = {15,375} for the
rebin factor.

A linear model for the slope b1,S seems satisfactory since R2 = 0.77. The constant pa-
rameter represents the value of b1,S for a mean value of α, τ, γ , and ρ among the range of
values considered. This constant is equal to 0.75 and is thus above the 0.5 value that we
would obtain in case of a homogeneous Poisson process. The variable that influences b1,S

the most is the power-law index for the area; the duration has a smaller influence, whereas
both the power-law index for the intensity (γ ) and the rebin parameter (ρ) are statistically
nonsignificant. With a value of α = −3 (and all other parameters kept at their mid-values),
mainly small events are generated. The slope b1,S then decreases down to 0.6, close to the
situation of a homogeneous Poisson process. When α grows to α = −1.5, larger events are
generated as well, and the superposition of large and small events produces a more inhomo-
geneous process: The value of b1,S then increases up to 0.9.

If one now considers the slope b1,T, the results of Table 3 indicate that the duration τ

mainly influences the evolution of the mean and STD computed over time. In this case, the
goodness of fit is relatively low (R2 = 0.57). Figure 4 shows how b1,T and b1,S evolve as
a function of α and τ , with γ kept fixed (γ = −1.6), and for a rebinned data set of size
100 × 100 × 5. A quadratic model seems more appropriate for the slope b1,T. If we fit a
quadratic model of the type

b1,T = c0 + c1α + c2τ + c3γ + c4ρ + c11α
2 + c22τ

2 + c33γ
2 + ε (15)

we obtain an acceptable R2 = 0.81. Within the quadratic terms, only the coefficient for τ 2

is significant. The parameter τ influences b1,T similarly to how α influences b1,S: When τ

is equal to −2.1, the slope b1,T increases to 0.87; when τ = −8 the slope decreases to 0.63
(with all other parameters kept fixed at their mid-values). The parameter α also influences
b1,T, but to a lesser extent. The intensity and rebin factor are again statistically nonsignifi-
cant.

In summary, we observe that i) the relationship between spatial mean and standard de-
viation is mostly affected by the distribution of areas of the events, ii) temporal mean and
standard deviation are driven mostly by the temporal dynamics, iii) the intensity distribution
does not seem to play a significant role, iv) we observe no strong effect of the coarsening
factor.
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Figure 4 Variation of the slopes b1,S (a) and b1,T (b) as a function of α and τ . The value for γ is fixed
and equal to −1.6. Here the rebin factor was equal to γ = 1500 (i.e., the coarsened data set is of size
100 × 100 × 5).

4. Discussion and Conclusion

We proposed a way to extract subpixel information in a one-minute-cadence EIT data set,
and we derived a scenario for the variation of the SNR as the scale of observation becomes
smaller. Taking into account the variability in the emission process, we showed that the local
SNR decays much more slowly in singular regions (where the variability is larger) than in
smooth regions (characterized by a more uniform emission). We observed in both cases that
the slope between standard deviation and mean is above 0.5 and that the SNR degrades more
slowly than in the case of a uniform Poisson process.

Next, we investigated how the mean – variance relationship evolves with different theo-
retical distribution of nanoflare parameters. A small index for the power-law distribution of
the area favors small events and generates a process close to a homogeneous Poisson distri-
bution. When a large disparity of areas is allowed in the simulation of events (by choosing
a large value for the power-law index), more inhomogeneous structures appear. These are
averaged at coarser resolution and create “spatial noise.” The slope b1,S in a graph represent-
ing the spatial standard deviation against the mean has in this case a value close to one. In
a parallel way, when the distribution (D) generates a large range of durations, the temporal
mean – STD relationship exhibits a slope larger than what is observed for a homogeneous
Poisson process.

The determination of solar variability (such as, e.g., microflaring or the determination of
coronal loop width) at the limit of instrument measure often requires a careful analysis to
separate noise components from true solar variability. We now relate our work to several
other methods presented in the literature.

Aschwanden et al. (2000) evaluate the level of different sources of instrumental noise
in the TRACE instrument: read-out, digitization, compression, and dark-current subtraction
noise. In addition to these noises, whose levels are independent of the flux, they estimate
two other noise components that depend on the flux level: the Poisson noise and the error
coming from the removal of cosmic-ray hits. However, they did not apply a flat-field cor-
rection to pixels, and hence their estimates are not subject to the flat-field noise described in
Section 2.1.

Our data analysis did not assume a particular photon-noise distribution; it was meant to
be as generic as possible. Katsukawa and Tsuneta (2001) took another approach in their
study of the time profile of X-ray intensities using Yohkoh/SXT. They first derive for each
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pixel its time profile and mean background intensity (I0), and they used this value to estimate
the standard deviation of the photon noise (σP). Next, they estimate the standard deviation
(σI) of the time-series profile, assuming the core component has a Gaussian distribution.
The ratio σI/σP increases with the mean profile I0, and they estimate the relation between
the two quantities. They observed that the fluctuations in darker regions (I0 ≤ 100 DN)
are almost entirely due to photon noise, whereas there are significant fluctuations of solar
origin in bright regions (I0 ≥ 100 DN). Although the methodology is different, the results
in Katsukawa and Tsuneta (2001) parallel our study: Darker regions look typically more
uniform, and we observe there a behavior closer to a homogeneous Poisson process than in
bright (more irregular) areas.

Finally, DeForest (2007) investigates the effect of random noise and telescope PSF on
compact linear structures featuring coronal loops. A forward model of the TRACE PSF
indicates that structures with apparent size less than two pixels wide cannot be distinguished
visually from structures of zero width. He also studied some particular loops observed by
TRACE. Assuming a loop is composed of a set of faint threads, he found an estimate for
the size of elementary structures in the lower corona. Similarly, Figure 3 shows how fine
structures disappear when observed at lower resolution.

In a forthcoming paper, we will analyze images of the quiet corona using multifractal
tools. It is also possible to use multifractal processes to synthesize images similar to the
quiet-Sun corona at higher resolution than what current telescopes offer. This allows us
to make more precise predictions about the SNR that would be available at a given high
resolution.
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Appendix: Pointwise Hölder Exponent

The Hölder exponent at x0, denoted h(x0), provides a way to quantify the strength of a
singularity of a function g at the point x0. It is defined in a rigorous way as the largest
exponent such that there exists a polynomial of degree n ≤ h(x0) and a constant C > 0 with
the property that for any x in a neighborhood of x0 the following inequality is verified:

∣∣g(x) − P (x − x0)
∣∣ ≤ C|x − x0|h(x0). (A1)

When g is n-times differentiable at x0, the polynomial P (x−x0) is simply the Taylor expan-
sion polynomial of g(x) at x0; in this case, h(x0) > n. If h(x0) < 1 the polynomial P (x −x0)

simplifies to g(x0). A well-known example is given by the function g(x) = a + b|x − x0|γ ,
whose Hölder exponent at x0 is given by γ (when γ is not an even integer). In general,
the higher h is, the more regular is the function g. Conversely, the smaller h is, the more
singular is the function g.
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