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Abstract Solving inverse problems usually calls for adapted priors such as
the definition of a well chosen representation of possible solutions. One family
of approaches relies on learning redundant dictionaries for sparse representa-
tion. In image processing, dictionary learning is applied to sets of patches.
Many methods work with a dictionary with a number of atoms that is fixed in
advance. Moreover optimization methods often call for the prior knowledge of
the noise level to tune regularization parameters. We propose a Bayesian non
parametric approach that is able to learn a dictionary of adapted size. The
use of an Indian Buffet Process prior permits to learn an adequate number of
atoms. The noise level is also accurately estimated so that nearly no parameter
tuning is needed. We illustrate the relevance of the resulting dictionaries on
numerical experiments.

Keywords sparse representations · dictionary learning · inverse problems ·
Indian Buffet Process

1 Introduction

Ill-posed inverse problems such as denoising, inpainting, deconvolution or su-
per resolution in image processing do not have a unique solution. The choice of
some adequate representation space thanks to some prior information or regu-
larization is necessary so that one can identify a unique and relevant solution.
In recent years, many works have proposed to use sparse representations [1].
A signal admits a sparse representation in some dictionary if it can be recon-
structed by using a small subset of a redundant set of atoms, a redundant
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dictionary. In image processing, this principle has led to two main classes of
approaches.

One possibility is to use some family of mathematical functions that share
generic geometrical properties of images like discrete-cosine-transform (DCT)
[2] , wavelets [3], . . . Such family of functions can be either orthogonal or re-
dundant. The choice of the dictionary remains crucial and greatly influences
the quality of the results. This paper adopts the second option which is dictio-
nary learning: a redundant dictionary of atoms is learnt from a set of reference
signals. The most simple technique is Principal Component Analysis (PCA)
that learns an orthonormal basis through matrix factorization. Redundant dic-
tionaries gather a number of atoms K that is greater than the dimension P of
the physical, inpired by the seminal work by Olshausen and Field 1996 [4].

Many dictionary learning methods solve an optimization problem. The ap-
proaches in [5, 6], [7, 8] propose an optimal dictionary by setting in advance a
large size (256 or 512) of the dictionary. A fast online approach is Clustering
based Online Learning of Dictionaries (COLD) [9] which elaborates on the
work in [10] by adding a mean-shift clustering step in the dictionary update
step. The choice of the size of a dictionary is crucial. A few works have therefore
elaborated on the seminal K-SVD approach [5] to propose dictionary learning
(DL) methods that infer the size of the dictionary. They automatically deter-
mine the ‘efficient’ number of atoms to represent image patches like enhanced
K-SVD [11], subclustering K-SVD [12] or stagewise K-SVD [13]. These strate-
gies essentially alternate between two steps to either increase or decrease the
size of the dictionary thanks to some modification of the K-SVD approach.
Another strategy called DLENE [14] starts from 2 atoms only. Then atoms
are recursively bifurcated aiming at a compromise between the reconstruction
error and the sparsity of the representation. In these optimization methods
sparsity is typically promoted by L0 or L1 penalty terms on the set of encod-
ing coefficients. However, they suffer from some limitations. They often fix in
advance the noise level, the size of the dictionary or the sparsity level.

Bayesian approaches have been much less studied. In [15], a Bayesian DL
method called BPFA is proposed thanks to a Beta-Bernoulli model. The BPFA
method promotes sparsity through an adapted Beta-Bernoulli prior to enforce
many encoding coefficients to zero. Note that this corresponds to a parametric
approximation of the Indian Buffet Process since this approach works with a
(large) fixed number of atoms.

The present contribution proposes a Bayesian non parametric approach
where the size of the dictionary is no more fixed in advance thanks to the use
of an Indian Buffet Process (IBP) prior [16, 17] to both promote sparsity and
deal with an adaptive number of atoms. The proposed method starts from
an empty dictionary, except the constant atom to treat the DC component
apart as usual. Gibbs sampling is used for inference. Itdoes not need to tune
parameters since the level of noise, which determines the regularization level
for sparse encoding, is also estimated during the dictionary learning. This
makes the method truely non parametric since only some crude intialization
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xi = D wi

Fig. 1 xi is sparse on D: only few coefficients are active in wi.

is needed. We illustrate the relevance of this approach on a set of denoising
experiments.

The paper is organized as follows. Section 2 briefly recalls on the problem
of dictionary learning. Section 3 first presents the Indian Buffet Process (IBP)
prior, then the proposed model and the Gibbs sampling algorithm for inference.
Section 4 illustrates the relevance of our DL approach on a synthetic dataset
as well as on the reconstruction of a clean image (without noise) and classical
image denoising experiments in comparison with other methods. Section 5
concludes and evokes some directions for future work.

2 Dictionary learning (DL)

Let matrix Y = [y1, ...,yN ] ∈ RP×N a set of N observations yi. In image
processing, each vector yi ∈ RP represents a patch of size

√
P ×

√
P , in

lexicographic order as column vectors. Let matrix X = [x1, ...,xN ] ∈ RP×N
represent the patches of the initial image. In presence of some additive noise
ε ∈ RP×N , the data is modeled by{

Y = X + ε
X = DW

(1)

where W = [w1, ...,wN ] ∈ RK×N are the encoding coefficients and D =
[d1, ...,dK ] ∈ RP×K is the dictionary of K atoms. Each xi is described by a
sparse set of coefficients wi, see Fig. 1. When working on image patches of size
8× 8 (in dimension P = 64), a set of K = 256 or 512 atoms is typically learnt
[1, 5, 15]. The noise is generally assumed to be Gaussian i.i.d. (reconstruction
error = quadratic error). Sparsity is typically imposed through a L0 or L1-
penalty in the mixed optimization problem (other formulations are possible):

(D,W) = argmin(D,W)

1

2
‖Y−DW‖22 + λ‖W‖1 (2)

Various approaches have been proposed to solve this problem by an alternate
optimization on D and W, including K-SVD (batch DL) [1, 5] and ODL (on-
line DL) [10]. Note that the choice of the regularization parameter λ is of
importance and should decrease as the noise level σε increases.
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Fig. 2 Dictionary of 59 atoms learnt from Barbara using IBP-DL with a noise level of
σε = 40.

In the Bayesian framework, the problem is typically written in the form of
a likelihood built according to the model (1):

p(Y | D,W, σε) =
1

(2πσ2
ε)NP/2

exp(− 1

2σ2
ε

tr[(Y−DW)T(Y−DW)]) (3)

The prior p(D,W, σε) plays the role of regularization and the joint posterior
writes:

p(D,W, σε | Y) ∝ p(Y | D,W, σε)p(D,W, σε) (4)

Using Gibbs sampling for inference, for example, the problem can be solved
by sampling alternately:

p(W | Y,D, σε) ∝ p(Y | D,W, σε)p(W) (5)

p(D | Y,W, σε) ∝ p(Y | D,W, σε)p(D) (6)

p(σε | Y,D,W) ∝ p(Y | D,W, σε)p(σε) (7)

In the parametric framework, the size of the dictionary must be set in advance.
Taking benefit from the Bayesian non parametric framework, we propose a
learning method without setting the size of dictionary in advance thanks to
an Indian Buffet Process prior [17]. The noise level is estimated simultaneously
so that no parameter tuning is necessary. The method is called IBP-DL for
Indian Buffet Process in Dictionary Learning. Fig. 2 shows an example of a
result of IBP-DL on Barbara image.

3 Proposed approach : IBP-DL

The present approach uses the Indian Buffet Process (IBP) [16,17] as a Bayesian
non parametric prior on sparse binary matrices with a potentially infinite num-
ber of rows. This model is key to the learning of a dictionary for sparse repre-
sentation with adaptive (potentially infinite) size. We only briefly recall about
the IBP, see [17] for details, before describing the model and Gibbs sampling
inference.

3.1 Indian Buffet Process (IBP)

The IBP was introduced in [16, 17] to deal with latent feature models in a
Bayesian non parametric framework. As a reminder, in the case of latent class
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Fig. 3 One realization of the IBP with α=10.

models each observation belongs to a single class only. In the latent feature
models each observation can be associated to a vector of latent features. For
a finite number K of binary of latent features, each element of the vector of
latent features may be considered as a Bernoulli random variable. The weights
of features drawn from a conjugate Beta prior.

The IBP can be built as the limit of a finite Beta-Bernoulli model with K
features when K→∞. It provides a prior on infinite binary feature-assignement
matrices Z such that Z(k, i) = 1 if observation i owns feature k (0 otherwise).
It combines two interesting properties for dictionary learning. IBP generates
binary matrices that are sparse and potentially infinite. Therefore such a prior
on the support of coefficients of a sparse representation with an adaptive num-
ber of atoms may be relevant. The properties of IBP are usually introduced
thanks to the following ‘history’corresponding to the Polya’s urn description.
A sequence of customers (observations) tastes dishes (features) in an infinite
buffet. Customer i tastes dish k with probability mk/i where mk is the num-
ber of previous customers who have tasted dish k : this behaviour induces
some clustering of customers’choices who exploits previous customers deci-
sions. This customer then also tastes Poisson(α/i) new dishes, which allows
for exploration and innovation. Fig. 3 illustrates a realization of the IBP with
20 customers and α=10.

Taking into account the exchangeability of customers and the invariance to
the ordering of features, IBP is characterized by a distribution on equivalence
classes of binary matrices [16] :

P [Z] =
αK+

2N−1∏
h=1

Kh!

exp(−αHN )

K+∏
k=1

(N −mk)!(mk − 1)!

N !
(8)

where HN=
N∑
i=1

1
i , mk is the number of observations using feature k, K+ is

the number of features for which mk > 0, Kh is the number of features
with the same ‘history’ h = Z(k, ·). The parameter α > 0 controls the ex-
pected total number of features. It appears that K+ ∼ Poisson(αHN ), hence
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Fig. 4 Graphical model for IBP-DL.

IE[K+]=αHN ' α logN . Fig. 3 illustrates the regularization effect if the IBP
through the logarithmic growth of the number of dishes K+ with the number
of customers N . Some dishes are often used ; for example third dish is used
by all customers, and other is rarely used, only one customer chooses dish
35. This shows a sparse effect. The IBP permits to both deal with a variable
sized dictionary (potentially infite but penalized) and promote sparsity (like a
Bernoulli-Gaussian model).

3.2 The Bayesian Non Parametric model: IBP-DL

The model is described by1 :

yi = Dwi + εi,∀1 ≤ i ≤ N (9)

wi = zi � si,∀1 ≤ i ≤ N (10)

dk ∼ N (0, P−1IP ),∀k ∈ N (11)

Z ∼ IBP (α) (12)

si ∼ N (0, σ2
sIK),∀1 ≤ i ≤ N (13)

εi ∼ N (0, σ2
εIP ),∀1 ≤ i ≤ N (14)

where yi is a column vector of dimension P , � represents the Hadamard prod-
uct. The vector zi ∈ {0, 1}K encodes which of the K columns of D are used
to represent yi ; si ∈ RK represents the coefficients used for this representa-
tion. The representation coefficients are defined as wki = zkiski, in the spirit
of a parametric Bernoulli-Gaussian model. The sparsity properties of W are
induced by the sparsity of Z thanks to the IBP prior. The present model also
deals with a potentially infinite number of atoms dk so that the size of the
dictionary is not limited a priori. The IBP prior plays the role of a regulariza-
tion term that penalizes the number K of active (non zero) rows in Z since

1 N (µ,Σ) : Gaussian distribution with expectation µ and covariance Σ.
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IE[K] ' α logN in the IBP. Except for σ2
D that is fixed to 1/P , conjugate priors

are used for parameters θ = (σ2
S , σ

2
ε, α): vague inverse Gamma distributions2

for variances with very small hyperparameters (c0 = d0 = e0 = f0 = 10−6)
are used for σ2

ε, σ2
S , and a G(1, 1) for α associated to a Poisson law in the IBP.

Posterior distributions are detailed on the next section. We emphasize that
the noise variance σ2

ε is estimated during inference, making the approach very
close to truely non parametric. Fig. 4 shows the graphical model.

3.3 Algorithm for Gibbs sampling

Now we briefly describe the Gibbs sampling strategy to sample the posterior
distribution P (D,S,Z,θ|Y).
Sampling Z ∼ IBP (α). Z is a matrix with an infinite number of rows, but
only non-zero rows are kept in memory. Let mk,−i the number of observations
other than i using atom k. One possible Gibbs sampling of the IBP goes in 2
steps [17] :

1. Update the zki = Z(k, i) for ‘active’ atoms k such that mk,−i > 0 (at least
1 patch other than i uses dk);

2. Add new rows to Z which corresponds to activating new atoms in dictionary
D.

In practice, one deals with finite matrices Z and S despite their theoretically
potentially infinite size. We now describe these steps in more detail.
Update active atoms : The prior term is p(zki = 1|Z−(k,i)) = mk,−i/N . The
likelihood p(Y|D,Z,S,θ) is easily computed from the Gaussian noise model.
Thanks to conjugacy of the prior on dictionary D, we can marginalize D out.
Hence, with W = Z� S, we obtain the collapsed likelihood

p(Y|W, σ2
ε, σ

2
D) =

exp
{
− 1

2σ2
ε
tr[Y(I−WT (WWT +

σ2
ε

σ2
D
I)−1W)YT ]

}
(2π)NP/2σ

(N−K)P
ε σKPD |WWT +

σ2
ε

σ2
D
I|P/2

(15)

From Bayes’ rule:

p(zki|Y,Z−(k,i),S, σ2
ε, σ

2
D) ∝ p(Y|W, σ2

ε, σ
2
D)p(zki|Z−(k,i)) (16)

If row Z(k, ·)=0, we suppress this row and the atom dk in D.
Activate new atoms : Following [18], we use a Metropolis-Hastings method to
sample the number knew of new atoms. This is equivalent in fact to deal with
rows of Z such that mk,−i = 0: this happens either when an atom is not used
(inactive, not stored) or when it is used by 1 patch only. Rows with singletons
have a unique coefficient 1 and zeros elsewhere: zki = 1 and mk,−i = 0. To
sample the number of new atoms amounts to sample the number of singletons
since when a new atom is activated, it creates a new singleton. We choose
to integrate out D then we don’t need to propose the new atoms in Dnew.

2 G(x; a, b) = xa−1ba exp(−bx)/Γ (a) for x > 0.
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Note that we can choose to integrate out D or S, but not both. Let ksing the
number of such singletons in matrix Z, Ssing the coefficients corresponding to
ksing. Let kprop ∈ N a proposal for the new number of singletons and Sprop
the new proposed coefficients corresponding to kprop. Thus the proposal is
ζprop = {kprop, Sprop} and we propose a move ζsing → ζprop with a probability
having the form :

J(ζprop) = JK(kprop)JS(Sprop) (17)

The proposal is accepted with probability min (1, aζsing→ζprop) where

aζsing→ζprop =
P (ζprop | Y, rest)J(ζsing)

P (ζsing | Y, rest)J(ζprop)
=
p(Y|ζprop, rest)
p(Y|ζsing, rest)

aKaS (18)

where

aK =
Poisson(kprop;α/N)JK(ksing)

Poisson(ksing;α/N)JK(kprop)
, aS =

N (Sprop; 0, σ2
S)JS(Ssing)

N (Ssing; 0, σ2
S)JS(Sprop)

(19)

The simplest proposal would be to use the prior on ζprop, i.e.

JK(kprop) = Poisson(kprop;α/N) then aK = 1 (20)

JS(Sprop) = N (Sprop; 0, σ2
S) then aS = 1 (21)

Then the acceptance threshold is simply governed by the collapsed likeli-
hood ratio. The proposal is accepted, that is ζnew = ζprop, if a uniform random
variable u ∈ (0, 1) verifies

u ≤ min

(
1,
p(Y|ζprop, rest)

p(Y|ζsing, rest)

)
(22)

Note that when we integrate out a variable somewhere and later this
variable occurs in another posterior, it must be sampled before reusing [21].
Therefore D must be sampled immediately after Z. Sampling D, S and θ =
(σ2
S , σ

2
ε, α) are done according to

D


p(dk|Y,Z,S,D−k,θ) ∝ N (µdk

,Σdk
)

Σdk
= (σ−2D IP + σ−2ε IP

N∑
i=1

w2
ki)
−1

µdk
= σ−2ε Σdk

N∑
i=1

wki(yi −
K∑
j 6=k

djwji)

(23)

S



p(ski|Y,D,Z,S−(k,i),θ) ∝ N (µski
, Σski

)

zki = 1⇒


Σski

= (σ−2ε dTk dk + σ−2S )−1

µski
= σ−2ε Σski

dTk (yi −
K∑
j 6=k

djwji)

zki = 0⇒
{
Σski

= σ2
S

µski
= 0

(24)
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Init. : K=0, Z=∅, D=∅, α=1, σ2
D=P−1, σ2

S=1, σε
Result: D ∈ RP×K ,Z ∈ {0; 1}K×P ,S ∈ RK×P , σε
for iteration t=1:T do

Sample Z ∼ IBP(α)
for data i=1:N do

for atom k=1:K do
Sample Z(k, i) according to (16)

end
Sample knew (# of new atoms) acc. to (22)
Complete Z with knew rows
Complete S with knew rows ∼ N (0, σ2

S)
Update K ← size(Z,1)

end

Sample D and S
for atoms k=1:K do

Sample dk ∼ N (µdk,Σdk) (23)
Sample S(k, zk 6= 0) ∼ N (µsk, Σsk) (24)

end

Sample θ = (σ2
S , σ

2
ε, α)

Sample σS according to (25)
Sample σε according to (26)
Sample α according to (27)

end

Algorithm 1: Pseudo-algorithm of the IBP-DL method.

1

σ2
S

∼ G

(
c0 +

KN

2
, d0 +

1

2

N∑
i=1

sTi si

)
(25)

1

σ2
ε

∼ G

(
e0 +

NP

2
, f0 +

1

2

N∑
i=1

‖yi −Dwi]‖22

)
(26)

α ∼ G

1 +K, 1 +

N∑
j=1

1/j

 (27)

One limitation of our algorithm is its computational cost because of Gibbs
sampling. Indeed, the complexity per-iteration of the IBP sampler isO(N3(K2+
KP )) due to the matrix in the exponent of the collapsed likelihood (15). The
accelerated Gibbs sampling [19] proposes to maintain the posterior over D
instead of integrating out D entirely. The observations Y and the features
assignement matrix W can split into two parts : one for the observation i,
and one for the rest. Sampling of zi will consist of removing the influence
of a single observation yi from the posterior over D. Once zi is sampled, we
restore the influence of yi into this posterior. The accelerated sampling [19]
can reduce the complexity to O(N(K2 +KP )). In pratice, sufficient statistics
(information form) are used to remove and to restore easily the influence of a
single observation [20].
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(a) (b)

Fig. 5 Comparison between (a) the original dictionary of K = 22 atoms for synthesis and
(b) the dictionary of K′ = 24 atoms estimated by IBP-DL. Red rectangles point on atoms
for which no correlation > 0.55 was found between original and estimated atoms : 18 atoms
are retrieved at a level of 0.55 correlation.

(a) (b) (c)

Fig. 6 Evolution of parameters’ samples through iterations of IBP-DL: (a) the noise level
σε, (b) the number of atoms K, (c) the parameter α of the IBP prior.
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Fig. 7 Comparaison the distribution of the number mk of observations using atom k
beetween the true mk of synthetic dataset and mk from IBP-DL.

4 Numerical experiments

4.1 Toy example

As a first experiment, we prepare a synthetic dataset of N = 10000 samples
from the proposed generative model in dimension P = 16. Each sample can be
seen as a small 4× 4 image. First, a realization Z of an IBP(α) with α = 2 is
drawn, leading to a total number of K = 22 features (Z is K ×N). Note that
K = 22 is close to E[K] ' α logN ' 18. Then a dictionary of K atoms is built
according to a normal law with variance σ2

D = 1/P . Coefficients S are i.i.d.
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(a)Dictionary : 150 atoms (b) Initial image (c) Restored image , PSNR=44.94dB

Fig. 8 Illustration of noiseless restoration obtained by using IBP-DL on a segment of bar-
bara image

Gaussian variables with σ2
S = 1. The dataset is corrupted by some additive

white Gaussian noise with σε = 0.1. Finally, the dataset is built from :

Y = D(Z� S) + ε (28)

Fig. 5 shows the comparison between the original dictionary, used to synthesize
the dataset, and the dictionary sampled at the last iteration of IBP-DL, here
after 10000 iterations. Atoms have been reordered to make the correspondence
more visible. One can observe that 20 atoms over 22 are retrieved at a 0.55
level of correlation (18 at 0.9 level, 14 at 0.99 level). Only 2 atoms of the
original dictionary, which are much correlated to her atoms within the original
dictionary, are not identified. This shows that the algorithm behaves very well
on this toy model.

Fig. 6 illustrates the behaviour of parameters’ samples across iterations.
One can see that the noise level σε, the number of atoms K and the parameter
α of the IBP prior soon fluctuate around their expected values after about 3000
iterations corresponding to the burn in time of the sampler.

Fig. 7 shows the distribution in descending order of the number mk of
observations using atom k in the synthetic dataset compared to the mk inferred
by IBP-DL. They are very similar, above all the first 14 atoms that reach a
0.99 level of correlation. The less frequently atoms are used, the more difficult
they are to retrieve. In the synthetic dataset, 4 atoms are used by less than
10 observations over 10000, corresponding to 4 atoms which are not identified
at a 0.55 level of correlation.

4.2 Noiseless restoration example

Now we consider dictionary learning from an image to evaluate the perfor-
mance of the IBP-DL. A dictionary is learnt from a segment of size 256 × 256
of Barbara image without noise. The full data set of 62001 overlapping patches
is used to restore this segment. IBP-DL method yields an adapted dictionary
with 150 atoms and the reconstruction is very accurate since PSNR=44.94dB.
Fig. 8 displays the result of image restoration without noise by using IBP-DL.
For comparison, K-SVD produces a dictionary of fixed size 256 and a larger
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Table 1 Results of IBP-DL for denoising applied to 9 images. Averaged estimated noise
level are 25.97 using σinit = 51, resp. 40.87 using σinit = 76.5, when the true level was 25,
resp. 40.

PSNR ' 20.17dB, σε = 25 PSNR ' 16.08dB, σε = 40

PSNR [dB] # atoms σ̂ε PSNR [dB] # atoms σ̂ε

Barbara 29.06 100 25.86 26.34 58 40.76

Boat 28.92 91 25.82 26.75 44 40.64

Carmeraman 28.57 413 26.10 26.24 121 41.16

Fingerprint 26.72 34 25.79 23.99 20 40.90

GoldHill 28.80 54 25.89 26.93 19 40.70

House 31.55 60 25.53 29.11 28 40.46

Lena 31.12 62 25.45 28.78 31 40.24

Mandrill 24.59 169 27.57 22.29 80 42.50

Peppers 29.46 116 25.76 27.06 55 40.58

reconstruction error since PSNR=43.97dB. The Bayesian method proposed
in [15] with a dictionary of size 256 as well obtains PSNR=42.92dB. IBP-DL
restores the image with an adapted yet smaller number of atoms and a better
quality of approximation.

4.3 Denoising example

Dictionary learning (DL) provides an adapted representation to solve inverse
problems. Even though there exist potentially better state of the art meth-
ods for denoising, e.g. BM3D [22], one simple and usual way to compare the
relevance of different dictionary learning methods is to compare their denois-
ing performances. Present experiments aim at checking the relevance of the
dictionaries obtained from the proposed IBP-DL.

Table 1 gathers numerical denoising performances of IBP-DL as well as the
dictionary size and the estimated noise level for 9 images of size 512×512 (8
bits) for 2 noise levels σε=25 or 40 correspond respectively to PSNR=20.17dB
and 16.08dB. There are (512−7)2 = 255025 overlapping patches in each image.
Here IBP-DL learns from 16129 50%-overlapping patches only (for sake of
limited numerical complexity). The initial value of σ̂ε is set to a crude estimate
of twice the true one in Algo. 1. Using a really non-parametric approach like
IBP-DL, it appears that the size of the dictionary can considerably vary from
one image to another, for instance from dozens to hundreds at the same level of
noise, see Table 1. Note that the noise level σε is inferred with good accuracy.

Fig. 9 displays typical denoising results obtained by using IBP-DL on sev-
eral examples of Table 1. The denoising images have a good quality. IBP-DL
learns from a reduced set of 50%-overlapping patches. The DC component (the
mean value) is kept apart: it is associated to the constant atom d0 = (1, ..., 1).
The resulting IBP-DL dictionary and estimated noise level σ̂ε are then used to



Towards dictionaries of optimal size: a BNP approach 13

(a) (b) (c)

Fig. 9 Illustration of typical denoising results obtained by using IBP-DL on images. From
top to bottom are the IBP-DL dictionary, the noisy, the denoised and the original images;
(a) Lena, from a PSNR of 20.17 dB to 31.12 dB, (b) Boat from a PSNR of 20.17 dB to 28.92
dB, (c) Barbara from a PSNR of 16.08 dB to 26.34 dB.

denoise images. To be consistent with the denoising method in [5,6]3, the im-
ages are denoised by averaging pixel estimates from overlapping patches recon-
structed by Orthogonal Matching Pursuit (OMP) with a maximum tolerance
of representation error of 1.15σε and a Lagrangian multiplier λ = 30/σε.

3 Matlab code by R. Rubinstein is available at http://www.cs.technion.ac.il/

~ronrubin/software.html
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We illustrate the relevance of IBP-DL by first comparing denoising results
with BM3D (state of the art as a top reference) and several K-SVD based
methods [5]. In the following, we compare with DLENE [14], an adaptive ap-
proach to learn overcomplete dictionaries with efficient numbers of elements
and BPFA [15], a bayesian approach that can be seen as a parametric approx-
imation of the IBP :

1. BM3D as a state of the art reference,
2. K-SVD with K=256 learnt from all available patches,
3. K-SVD with K=256 learnt from the same reduced dataset as IBP-DL.
4. DLENE with a compromise between reconstruction error and sparsity by

adapting the number of atoms.
5. BPFA with an initial number K of atoms depending on the size of the

image.

Fig. 10 compares the denoising performance of IBP-DL, see Table 1, with
BM3D [22] and these K-SVD based methods [5]. Table 2 shows numerical com-
parisons of IBP-DL with BPFA: dictionary size of IBP-DL, denoising perfor-
mances and estimated noise level. Note that, the comparison between IBP-DL
and BPFA method is realized on the full training set. Results from BM3D [22]
are used as a reference only since we do not expect to obtain better results
here. The main observation is that IBP-DL performances are comparable to
K-SVD, 0.3dB below at worst. Since our purpose is not to achieve the best
denoising but to validate our dictionary learning approach, this is a good indi-
cation that IBP-DL dictionaries are at least as relevant as K-SVD ones. Note
that the results using K-SVD [5, 6] are presented in the best conditions, that
is when the parameters are set to their optimal values. This is possible in par-
ticular when an accurate estimate of the noise level is available. We emphasize
that in IBP-DL the noise level is part of the estimated parameters so that the
method does not call for any parameter tuning. Another important observa-
tion with respect to K-SVD is its sensitivity to the training set. It appears that
denoising performances drop dramatically when a reduced training set is used
which indicates a worse learning efficiency than IBP-DL. Here, to reduce com-
putational time, IBP-DL works with a reduced set of 50% overlapping patches
(16129 patches). Fig. 10 shows that K-SVD performs much worse when using
this same dataset in place of the full set of 255025 patches.

It is noticeable that IBP-DL dictionaries sometimes feature K < 64 atoms
as the noise level gets higher: the adaptive sized dictionary is not always re-
dundant, see Table 1 & 2. However, the denoising performance remains com-
parable with K-SVD that learns a larger redundant dictionary of 256 atoms
: the IBP-DL dictionary well captures a reduced and efficient representation
of the image content. The dictionary size tends to increase for a smaller noise
level. This is expected since in the limit of no noise, the dictionary should ide-
ally comprise all the original patches of the image (up to 255025) in a 1-sparse
representation while in the limit of large noise, more and more patches must
be averaged to reduce noise leading to a smaller number of atoms.
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Fig. 10 Denoising results and sizes of IBP-DL dictionaries for noise level (right) σε = 25,
(left) σε = 40. The text above each group of bars is the IBP-DL dictionary size. From
bottom to top are the PSNR using IBP-DL learnt from the reduced training set, K-SVD
with 256 atoms learnt from the full set of available patches, K-SVD with 256 atoms learnt
from the reduced training set (as IBP-DL), BM3D.

We now compare our results with DLENE [14], a recent work which also
adapts the size of the dictionary. DLENE uses the reduced training set as well.
It targets a compromise between reconstruction error and sparsity by adapt-
ing the number of atoms. For Peppers with σε=40, PSNRIBP-DL=27.07dB
and DLENE yields PSNRDLENE= 27.27dB. For Barbara with σε=25, we get
PSNRIBP-DL=29.06 dB and PSNRDLENE= 28.82 dB, see results in [14] for
other comparisons. In general, IBP-DL performs as well as DLENE for de-
noising. Again this supports the relevance of the IBP-DL dictionaries.

We also compare the results of IBP-DL to those of BPFA [15], a bayesian
method implemented using Gibbs sampling. Despite a connection with the
Indian Buffet Process, this approach is not really a non-parametric approach
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Table 2 The results of IBP-DL and BPFA approaches when the true noise level was 25 and
40. For each noise level, from left to right are the IBP-DL dictionary size K, the denoising
PSNR (dB) and the estimated noise level then the denoising PSNR (dB) and the estimated
noise level using BPFA.

PSNR ' 20.17dB, σε = 25 PSNR ' 16.08dB, σε = 40

IBP-DL BPFA IBP-DL BPFA

# atoms PSNR σ̂ε PSNR σ̂ε # atoms PSNR σ̂ε PSNR σ̂ε

House 57 31.95 25.37 32.14 25.43 40 29.47 40.43 29.73 40.54

Peppers 191 29.40 25.48 29.88 25.50 163 27.15 40.34 27.06 40.67

Barbara 134 29.31 25.66 29.79 25.45 107 26.81 40.33 26.34 40.15

Lena 147 31.40 25.20 31.58 25.32 111 29.15 40.04 29.27 40.19

and is a parametric approximation of the IBP because it works with a fixed
number of atoms in advance. The initial size (K=256 or 512) of the dictionary
of BPFA depends on the size of the image. Then, a subset of atoms is used that
is slightly smaller than the initial size. This times, both IBP-DL and BPFA
approaches train from the full set of available patches : 62001 overlapping
patches for House and Peppers images and 255025 overlapping for Barbara,
Lena images. BPFA approach initializes K = 256 for House and Peppers
images and K = 512 for Barbara, Lena images. Table 2 illustrates the results
of IBP-DL and BPFA with 2 noise levels σε=25 or 40. The image restoration
method4 is the same as in [15].

For House with σε=25, PSNRIBP-DL=31.95dB with 57 atoms and BPFA
yields PSNRBPFA= 32.14dB. For Barbara with σε=40, PSNRBPFA=26.34 dB
while we get PSNRIBP-DL= 26.81 dB with 107 atoms. The IBP-DL perfor-
mances are comparable to BPFA [15] while the adapted size of IBP-DL dic-
tionaries are often relatively smaller than the BPFA method. To this respect,
IBP-DL improves on the previous method [15] and our observations support
the interest of a non parametric approach that is more adaptive to the actual
content of the image. Again, we note that the dictionary size is increased for
a smaller noise level.

One important limitation of IBP-DL however is that sampling from an
IBP is expensive even though the accelerated sampling [19] is implemented,
reducing the complexity from O(N3(K2 +KP )) to O(N(K2 +KP )); that is
still larger than the O(K(N +P )) complexity of BPFA with an initial number
K of atoms. For example, training on a reduced dataset of Barbara image,
IBP-DL costs about 1 hour for 30 iterations using Matlab R2013b on a recent
personal computer. There is room for a significant improvement to this respect
either by using a more efficient implementation or by proposing other inference
methods. In this case, Gibbs sampling for non parametric methods is close to
prohibitive.

4 Matlab code by M. Zhou is available at http://mingyuanzhou.github.io/Code.html
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(a) (b)

Fig. 11 (a) Evolution of the number of atoms in the dictionary across iterations of IBP-DL
on Barbara for 4 different noise realizations with σε = 25. (b) Evolution of the noise level
sampled over iterations of IBP-DL on Barbara when σε = 25 and σinit = 51.

Fig. 11(a) shows the evolution of the size K of the dictionary across iter-
ations. The final size (around 100 in this example) is reached after about 15
iterations only; implicitly it means that α converges to about K/ logN ' 10.
Fig. 11(b) shows the evolution of the sampled σε with iterations on an ex-
ample. After 15 iterations, the sampled value has converged very close to the
true value. The estimation error is at most of a few percents only 2% - 10%
when σε=25 and 1% - 6% when σε=40. This accurate estimate is an essential
benefit of this approach.

5 Conclusion

The present Bayesian non parametric (BNP) approach learns a dictionary of
adaptive size from noisy images. To illustrate and compare the relevance of the
proposed IBP-DL with respect to other DL methods, numerical experiments
study the denoising performances of the proposed IBP-DL: they are similar
to those of other DL approaches such as K-SVD in its optimal setting [5] for
fixed size, DLENE [14] with an adaptive size of the dictionary learnt from a
reduced training set or BPFA [15] for an initial number K of atoms.

Starting from an empty dictionary apart from the DC atom, IBP-DL yields
an efficient dictionary. It simultaneously infers the size of the dictionary as well
as all the parameters of the model such as the noise level that is a crucial input
to later solve any inverse problem. We emphasize that IBP-DL appears as a
non parametric method with an adaptive number of degrees of freedom and
no parameter tuning. Future work will explore other inference methods than
Gibbs sampling for scalability and a more general model for other cases of
inverse problems in image processing.
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