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Statistical performance analysis of a fast
super-resolution technique using noisy translations

Pierre Chainais, Member, IEEE, Aymeric Leray,

Abstract—The registration process is a key step for super-
resolution (SR) reconstruction. More and more devices permit
to overcome this bottleneck by using a controlled positioning
system, e.g. sensor shifting using a piezoelectric stage. This makes
possible to acquire multiple images of the same scene at different
controlled positions. Then a fast SR algorithm [1] can be used
for efficient SR reconstruction. In this case, the optimal use of
r2 images for a resolution enhancement factor r is generally not
enough to obtain satisfying results due to the random inaccuracy
of the positioning system. Thus we propose to take several images
around each reference position. We study the error produced by
the SR algorithm due to spatial uncertainty as a function of the
number of images per position. We obtain a lower bound on the
number of images that is necessary to ensure a given error upper
bound with probability higher than some desired confidence level.
Such results give precious hints to the design of SR systems.

Index Terms—high-resolution imaging; reconstruction algo-
rithms ; super-resolution; performance evaluation ; error analysis

I. INTRODUCTION

SUPER-RESOLUTION (SR) will likely be implemented
soon on every kind of camera from smartphones to

DSLRs, compact system cameras or even microscopes and
telescopes... This is made always easier thanks to many
recent devices which facilitate multiframe acquisition and
SR software. In particular, piezoelectric actuators which now
achieve a positioning accuracy of fractions of nanometers
[2] enable sensor shifting or moving platforms permitting to
take several low-resolution (LR) pictures at slightly different
globally translated positions. DSLR sellers (e.g. Ricoh/Pentax)
recently announced new SR camera that will create high reso-
lution (HR) images from sensor shift technology, as Hasselblad
H5D-200MS and Olympus E-M5 Mark II are already doing.
Numerous SR methods combining several low-resolution (LR)
images to compute one high-resolution (HR) image have been
developed, see [3] for a review. The registration step is often
the bottleneck in terms of SR performance. Sensor shifting
devices permit to reduce its impact thanks to the use of
some controlled positioning system. To reach a given integer
resolution enhancement factor r (2, 3...), the optimal solution
is to perform r2 translations corresponding to displacements
of (k/r, `/r) in LR pixel units (1 LR pixel = r HR pixels)
for integers (k, `) ∈ (0, r − 1)2. The typical pixel size is of a
few µm nowadays.
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However, the positioning system (or any registration
method) only approximately reaches the targeted positions
with some small random error. Based on a statistical perfor-
mance analysis, we study the influence of this error on the
quality of the SR images reconstructed with a simple and
fast SR algorithm [1] which assumes that displacements are
exactly known. We also study the importance of using several
acquisitions of the same targeted positions to compensate for
postioning errors in order to optimize the number of images
required to ensure a given quality of the SR image. While
the chosen SR method is a priori not as efficient as state of
the art methods [4], the theoretical analysis of its statistical
performance is possible, which would not likely be the case
for other methods. Therefore, in addition to its rapidity, this
method would come with theoretical guarantees on the quality
of reconstruction. Moreover the adopted methodology paves
the way to the analysis of more sophisticated SR methods,
which is of great importance to give hints on the optimal co-
conception of integrated SR imaging sytems.

Over the last 30 years, several works have dealt with
mathematical analysis of SR algorithms, e.g. [5]–[13]. The
works described in [5]–[7] essentially study the convergence
of iterative methods for SR (e.g., conjugate gradient) including
registration and deconvolution steps. They show that the
reconstruction error decreases as the inverse of the number
of LR images. In [8], the difficulty of the inverse problem is
characterized by the conditioning number of a matrix defined
from the direct model which is proportional to r2s2 (s = width
of sensor pixels). When translations are uniformly distributed
in (0, r)2, this conditioning number tends to 1 and a direct
inversion is possible with high probability when a large num-
ber of images is used [9]. In [10], the analysis was performed
in the Fourier domain and showed that the mean square error
decreases as the number of images increases when random
translations are used. Ref. [11] quantifies the limitations of
SR methods by computing Cramer-Rao lower bounds, also
working in the Fourier domain. In the most favourable case
where translations are known (no registration is needed), this
bound is proportional to r/n if n is the number of images. All
these works back to the 1980s [12] explain what makes SR
difficult and how far more images can make it simpler. How-
ever, they have only expressed limited quantitative prediction
beyond the qualitative 1/n behaviour of the reconstruction
error. Our purpose is a detailed quantitative statistical error
analysis of the simple Shift & Add method described in [1].
We obtain a lower bound on the number of images that is
necessary to achieve a given error bound with high probability.
The control of errors is crucial to produce nice looking results
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but also to ensure reliable scientific observations. The present
study is performed in the Fourier domain. The error at each
frequency component is quantitatively evaluated. The use of
Hoeffding’s inequality permits to compute upper bounds and
confidence intervals of practical use are obtained.

A preliminary work was presented at ICASSP 2014 [14]
with less general results because the assumptions were more
restrictive (special uniform distribution). In this work, we use
a more general and realistic assumption of bounded error on
displacements. Furthermore, the potential presence of bias is
taken into account and all mathematical proofs are given. The
present results are tighter thanks to the use of Hoeffding’s
concentration inequality in place of the loose Bienaymé-
Cebycev inequality. This article includes a numerical study
and more detailed illustrations ; Matlab codes are available.

Section II presents the setting and the model. Section III
presents our main theoretical results which predict the required
number of image acquisitions at each position to ensure some
given confidence level in the reconstructed image. Sections
III-A & III-B present the most technical aspects; proofs are in
Appendix. Section III-C sums up our main theoretical results.
Section IV presents numerical results. Section V discusses our
contributions and some prospects.

II. A FAST AND CONTROLLED SUPER-RESOLUTION
TECHNIQUE

A. The super-resolution problem

For a given SR factor r, the most common linear formula-
tion of the general SR problem in the pixel domain is [1]:

Yk = DkHkFkYHR + nk k = 1, ..,K, (1)

where YHR is the (desired) high resolution image to estimate
from the K LR images {Yk, 1 ≤ k ≤ K}. We assume the
unknown HR image YHR is a periodic bandlimited image
sampled above the Nyquist rate. Each image Yk is a LR
observation of the same underlying scene translated by Fk.
The blur matrices Hk model the point spread function (PSF)
of the acquisition system and matrices Dk are the decimation
operator by a factor r. If YHR is of size r2N2×1 and Yk of size
N2×1, matrices Fk and Hk are of size (rN)2× (rN)2 while
Dk are N2× (rN)2; nk is the noise, generally assumed to be
Gaussian white noise so that E(nkn

t
k) = σ2I . Images YHR,

Yk and nk are rearranged in lexicographic ordered vectors.
The least squares optimization problem can be formulated as:

ŶHR = argminY

K∑
k=1

‖Yk −DkHkFkY ‖22. (2)

Other formulations based on the L1-norm or adding some
regularization have also been proposed [15]. We focus on the
method described in [1]: its simplicity makes it possible to
quantitatively analyze its performances. Such a guarantee may
be crucial for scientific imaging or the design of devices.

B. Super-resolution algorithm

Several usual assumptions are used in [1]. The PSF of the
acquisition system is known and spatially homogeneous so

Ỹ de(j)
aliasing

(a) (b)
Fig. 1. (a) Spatial domain: black disks and thick grid are the original LR
sampling grid, the thin grid is the target HR grid. Other symbols are positions
of 3 translated LR images of 1/2 LR pixel (r = 2); (b) Fourier domain: the
inner (red) square contains LR frequencies (−N/2, N/2)2, the outer square
is for HR frequencies (−rN/2, rN/2)2. Arrows represent aliasing, see (10).

r super-resolution factor, typically r = 2, 3...
YHR High Resolution (HR) image ∈ R(rN)2

Yk Low Resolution (LR) image ∈ RN2

nk noise in low resolution image Yk
Fk translation operator on HR images
Hk convolution blur operator on HR images
Dk decimation operator N2 × (rN)2

d target position of one LR image
Y d HR image Y translated by d = (dx, dy)
bdj error on displacement de(j) = d+ bdj

nd number of LR images around position d
ε maximum positioning error in LR pixel units
η exponent of the spectrum of natural images
k, k′ spatial frequency vectors resp. at LR and HR
X̃(k′) = [FHRX](k′) Discrete Fourier Transform of HR image X
Ỹ (k) = [FLRY ](k) Discrete Fourier Transform of LR image Y
DHR the set of spatial HR frequencies k′

DLR the set of spatial LR frequencies k
α, γ vectors of 2D integer translations
qα, qγ normalized frequencies
p, p1, p2 relative absolute errors in (0, 1)
P1, P2 probabilities in (0, 1)
F t transpose of matrix F
IE[ · ] mathematical expectation
〈 · 〉d averging operator over d

TABLE I
SUMMARY OF NOTATIONS.

that ∀k,Hk = H . Decimation is the same for all images
so that ∀k,Dk = D in (1) & (2). We will also assume
that the r2 possible translated images at integer multiples
(k, `) ∈ (0, r − 1)2 of the HR scale are available to provide
an optimal setting for SR [11]. Then the solution to the least-
square error SR problem (2) consists of two steps. A blurred
image Z = HYHR can be estimated by [1]:

Z := HYHR =
r2∑
k=1

F tkD
tYk (3)

The operation in (3) is equivalent to a simple interlacing of LR
images, see Fig. 1. Then the final HR image results from the
deconvolution of Z, which can be done using any algorithm
such as Wiener or Lucy [16]. Such an approach separates
the problem of SR into two steps of fusion (estimating Z)
and deconvolution (deblurring to estimate YHR). This work
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(a) (b) (c) (d)
Fig. 2. (a) Barbara, (b) Results from Algorithm [1] with r = 2, ε = 0.1,
nd = 32 im./pos. ; HF reconstruction error (zoom on screen), (c) nd = 32⇒
SNRHF =25.0dB, (d) nd = 1⇒ SNRHF =10.0dB.

focuses on the performance analysis of the fusion step only.
Recall that high frequency terms at some k′ are preserved if
and only if the PSF H̃(k′) is not zero. Some prior information
might be used to reconstruct missing frequencies [11].

This algorithm requires one idealized assumption: displace-
ments (matrices Fk) are assumed to be exact integer multiples
of HR pixels. In practice, this is only approximately true due to
the finite precision of the positioning system. Our purpose is to
study the influence of this approximation. One solution would
be to carry out accurate sub-pixel registration. This would
remain insufficient since state of the art techniques cannot
ensure a precision much better than 0.1-0.01 pixel [17], [18].
Another possibility is to take nd ≥ 1 images for each required
position so that the true Z will be replaced by the estimate:

X = Ẑ =
∑
d

1

nd

nd∑
j=1

(Fd)tDtY de(j) (4)

Y d is the image of a scene Y translated by d where
d = (dx, dy) denotes the targeted displacement vector;
de(j) = d + bdj the real experimental displacement; bdj

is the noise on the platform position. Note that in general
(Fd)tFde(j) 6= IrN . One can hope to compensate from
displacement inaccuracies by using multiple acquisitions at
the same targeted position with some random error bdj around
the expected value d. A realistic assumption [2], [13], [19] is
that the position error is bounded by ε > 0 in LR pixel units
or εr = εr in HR pixel units. For a given targeted position,
the positioning system will be reset between each acquisition
so that positions are randomly distributed around the average
position (which may be biased due to miscalibration). This
averaging process is expected to enhance the SR quality. Fig. 2
illustrates typical results from this approach applied to a detail
of Barbara for r = 2, ε = 0.1. The error on reconstructed high
frequency components are compared for nd = 1 and nd = 32
images/position. A SNR gain of about 15dB is observed when
using 32 images (note for later use that 10log10(32) = 15).
Our aim is to reconstruct probably approximately correct
(PAC) images by quantifying the number of images that
should be taken per reference position to respect some given
upper relative error bound of p (e.g. 0.10) with probability
(confidence) higher than P (e.g. 0.90).

C. Aliasing effects and notations

To detail the effect of aliasing, we consider the relation
between the estimated blurred HR image X defined by (4) and

the LR images Y de(j) in the Fourier domain, see Fig. 1(b).
For some integer n, the interval (−n : n) denotes the set of
integers between −n and n (Matlab notations). When using
the Discrete Fourier Transform (DFT), we denote by k the
LR frequencies in DLR = (−N/2 : N/2− 1)2 and k′ the HR
frequencies in DHR = (−rN/2 : rN/2 − 1)2. Given some
HR frequency k′, we need to deal with corresponding aliased
terms in the LR image. The integer vector γ ∈ (−r : r)2 is
such that k = k′ − γN ∈ DLR. We denote by α the integer
vectors such that k+αN ∈ DHR. Sums

∑
d are over all the

r2 ideal displacements d ∈ (0 : r − 1)2 and sums over α are
sums over all possible HR frequencies kα = k+ αN (up to
rN/2). The DFT of image Z is Z̃. To alleviate formulas, we
introduce the normalized frequencies:

qγ =
2π

rN
k′ =

2π

rN
(k+ γN) = q+ γ

2π

r

qα =
2π

rN
(k+αN) = q+α

2π

r

(5)

where α,γ ∈ Z2. Note that qα ∈ (−π, π)2 so that ‖qα‖1 ≤
2π and ‖qα‖2 ≤

√
2π.

Back to (4), note that when D is the decimation operator, Dt

is an upsampling operation (inserting zeros between samples)
that produces aliasing. If FHR is the HR DFT, for k′ ∈ DHR:

[FHRDtY de(j)](k′) = Ỹ de(j)(k = k′ − γN) (6)

Taking phase shifts due to translations of (−d) associated to
(Fd)t into account in the DFT of (4) yields:

X̃(k′) =
∑
d

1

nd

nd∑
j=1

Ỹ de(j)(k′ − γN) e
2iπ
rN d·k′ (7)

Since each observation is a decimated version of the blurred
translated scene, one has in the spatial domain:

Y de(j) = DHFde(j)YHR = DZde(j) (8)

In the Fourier domain:

Ỹ de(j)(k) = [FLRDF tHRZ̃de(j)](k) (9)

and thanks to usual properties of the sum of roots of unity
(see Appendix E):

Ỹ de(j)(k) =
1

r2

∑
α

Z̃(kα) e
− 2iπ
rN kα·de(j) (10)

where we have used the fact that the homogeneous blur
operator (convolution) is diagonal in Fourier domain. One can
explicitly see in (10) how the information at high frequencies
kα = k+αN from the HR image is aliased at low frequency
k in each LR image Y de(j). By separating the desired main
contribution at k′ = k + γN and aliasing terms at k + αN
for α 6= γ, one gets by reporting (10) in (7):

X̃(k′) = Z̃(k′)Gγ(k
′) +B(k′) (11)

B(k′) =
∑
α6=γ

Z̃(k+αN)Gα(k
′) (12)

where

Gα(k
′) =

1

r2nd

∑
d,j

e−i
2π
r (α−γ)deiqα·bdj (13)
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(except when k′x or k′y is equal to −rN/2). In the ideal case
where bdj = 0 translations are exact multiples of HR pixels
and one retrieves X̃ = Z̃ = H̃ỸHR since Gγ = 1 and Gα = 0
for α 6= γ. The first term in (11) is the main approximation
term, which should be as close as possible to Z̃(k′). The
second term B(k′) in (11) is the aliasing term and should
be as small as possible compared to the approximation term.
Our purpose is to establish conditions for which X is a good
approximation of Z within quantitative probabilistic bounds.

III. BOUNDS ON RECONSTRUCTION ERRORS

This section proves concentration inequalities that guarantee
PAC SR. In this study, we make the general and realistic
assumption that position errors are bounded so that bdj ∈
(−εr, εr)2 HR pixel units. We do not assume that IE[bdj ] = 0:
the positioning system might be biased. In section III-A &
III-B we deal with the coefficient Gγ of Z in the main
approximation term of (11) and then turn to the contribution
of the aliasing term B(k′). The reader interested in our main
results only can directly move to sections III-C & III-D. Proofs
are in Appendices B & C.

A. Bound on the approximation term Gγ(k
′)

Since one expects that 1
r2 IEGγ ' 1, we start from

|Gγ(k
′)− 1| ≤ (14)

|Gγ(k
′)− IE[Gγ(k

′)]|+ |IE[Gγ(k
′)]− 1|

Noting that IE[Gγ(k
′)] = IE[eiqγ ·bdj ], the Taylor development

of the complex exponential function yields1

∣∣∣IE[eiqγ ·bdj ]− 1
∣∣∣ ≤ |qγ .IE[bdj ]|+ IE

[
(qγ .bdj )

2

2

]
≤ ‖qγ‖2 ‖IE[bdj ]‖2 +

‖qγ‖21 ε2r
2︸ ︷︷ ︸

B1

(15)

since bdj ∈ (−εr, εr)2. Then we deal with the first term
in (14) by introducing:

BG =
1

r2nd

∑
d,j

(eiqγ ·bdj − IEeiqγ ·bdj ) (16)

To obtain concentration inequalities on |BG|, our approach
goes in 3 steps: i) bound the real and imaginary parts thanks
to properties of their power series expansions, ii) prove
concentration inequalities by using Hoeffding’s inequality for
the sum of differences between random variables and their
expectations, iii) bound |BG| by using Lemma 1 below to
combine bounds on the real and imaginary parts.

Lemma 1: (see proof in Appendix A) Let x1 and x2 two
random variables in R. Let a1, a2 > 0 and P1, P2 ∈ (0, 1)
such that P (|xi| ≥ ai) ≤ Pi, i = 1, 2. Then

P (
√
x21 + x22 ≥

√
a21 + a22) ≤ P1 + P2 (17)

P (|x1|+ |x2| ≥ a1 + a2) ≤ P1 + P2 (18)

1See Lemma 1 p. 512 in Feller (vol. 2) [20] on the Taylor development of
exp(it) for t > 0.

Let us recall Hoeffding’s inequality. Hoeffding’s inequality
[21]. Let {Xi, 1 ≤ i ≤ n} a set of independent random
variables distributed over finite intervals [ai, bi]. Let S =∑n
i=1 (Xi − IE[Xi]). For all t > 0,

P (|S| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
(19)

This permits to prove that, see Appendix B:

P

|BG| ≥ √2
(
δγ +

‖qγ‖31ε3r
3

)
︸ ︷︷ ︸

B2

 ≤ 4e−c
2nd/8 (20)

We obtain the final concentration inequality for the main
approximation term by combining (15) and (20) and going
back to (14):

P (|Gγ(k
′)− 1| ≥ B1 +B2) ≤ 4e−c

2nd/8 (21)

for εr ≤ 1/πr, where B1 and B2 are defined in (15) & (20).
Let p ∈ (0, 1) the maximum relative error constraint, e.g.,
p = 0.1, and P1 ∈ (0, 1) such that 1−P1 is the corresponding
concentration probability. For sufficiently large p, one can
define ∀k′ ∈ DHR or qγ ∈ 2π

rNDHR the adequate maximum
coefficient c(qγ) > 0 such that, neglecting the cubic term,

√
2c(qγ)‖qγ‖1ε+‖qγ‖2〈‖IE[bd,j ]‖2〉d+

‖qγ‖21ε2r
2

≤ p (22)

c(qγ) is a decreasing function of ‖qγ‖1, which is minimum
for maximal frequencies such that ‖qγ‖1 = 2π. For p large
enough, one can define

c1(p) = min
qγ

c(qγ) = c(π, π) (23)

=
1

2
√
2πε

(
p−
√
2π〈‖IE[bd,j ]‖2〉d − 2π2ε2r2

)
Then (22) with c(qγ) replaced by c1(p) is true for all qγ ∈
2π
rNDHR. When the averaged bias 〈IE[eiqγ ·bdj ]〉d is zero or
remains negligible (� p/

√
2π),

c1(p) '
p− 2π2ε2r2

2
√
2πε

(24)

If ε ≤ 1/πr and c1(p) is well defined, (21) becomes:

P (|Gγ(k
′)− 1| ≥ p) ≤ 4 exp

(
−c1(p)

2nd
8

)
(25)

∀k′ ∈ DHR. Then the relative error remains bounded by p
with probability larger than some P1 ∈ (0, 1) if

nd ≥
8

c1(p)2
log

(
4

1− P1

)
(26)

The larger c1(p), the smaller the lower bound. This bound does
not depend on the image content. In practice, it tells that, for
nd large enough, the main approximation term in (11) is less
than 100p% away from the targeted Z̃(k′) with probability
larger than P1. In ideal experimental conditions, with no bias
and εr ≤

√
p/2π2,

nd ≥
(

8πε

p− 2π2ε2r2

)2

log

(
4

1− P1

)
(27)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2016.2526901

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



PREPRINT - FEBRUARY 3, 2016 5

For instance, see Tab. II, for ε = 0.01, r = 2, p = 0.1 and
P1 = 0.90 (error ≤ 10% with ≥ 90% confidence level) this
bound is nd ≥ 28. The concentration level (1 − P1) can be
very tight due to the logarithmic dependence of nd on (1 −
P1). At the same error level p = 0.1, the criterion becomes
nd ≥ 45 for P1 = 0.99. In contrast, a much larger nd ≥
5.3 104 is necessary to guarantee an accuracy of 1% (p =
0.01) at P1 = 0.90 confidence level. In summary, confidence
is cheap while accuracy is expensive. Note that the position
accuracy ε should essentially decrease proportionally to p as a
finer reconstruction is desired. Moreover, given a desired SR
factor r and a position accuracy ε, the relative error p is lower
bounded by 2π2ε2r2. For r = 2 and ε = 0.01, the smallest
relative error p that can be guaranteed is pbest = 0.008.

B. Bound on the aliasing terms (Gα,α 6= γ)

The ideal situation in (11) occurs when the translations d
are exactly the r2 possible multiples of HR pixels. Due to
properties of complex roots of unity, all the aliasing terms
Gα(k

′) in (11) cancel for α 6= γ. Our aim is to bound
the contribution of aliasing error terms when translations are
noisy due to approximate control only. The adopted strategy is
similar to that of previous section, see proof in Appendix C.
We also use the properties of roots of unity and a standard
assumption on the spectral content of the target image. We
start from (13):

Gα(k
′) =

1

r2nd

∑
d,j

e−i
2π
r (α−γ)deiqα·bdj (28)

Let
θαd =

2π

r
(α− γ)d, d ∈ (0 : r − 1)2 (29)

Note that the set of the eiθαd matches the set of products
of complex roots of unity, see eq. (94)-(97) in Appendix E.
The sum over translations

∑
d involves the sum of roots of

unity, which is zero, in the computation of the aliasing term. In
Appendix C, assuming that the variations of the bias IE[qα ·
bdj ] around 〈IE[qα · bdj ]〉d for fixed d are negligible, we
prove the following concentration inequalities. For α − γ /∈
{0, r/2}2 :

P
(
|Gα(k

′)| ≥
√
2δ′α

)
≤ 4e−c

2nd (30)

For α − γ ∈ {0, r/2}2, (78) in Appendix C gives a
deterministic bound on the real part. Moreover sin(θαd) = 0
in (79) so that one gets from (18) in Lemma 1:

P (|Gα(k
′)| ≥ δ′α) ≤ 2e−c

2nd (31)

which is even tighter than (30). In the special case r = 2, all
α− γ are in {0, r/2}2 = {0, 1}2 so that we need (31) only
and tighter bounds are obtained.

We aim at taking into account the contribution of all terms
Z̃αGα(k

′) for α 6= γ in (12). Let assume that they are
independent. This is at least approximately true for two main
reasons. First one can show that the Gα(k

′) are uncorrelated,
see (110) in Appendix G and second the Z̃α carry information
about very distinct frequencies in the image. Then we can use
Lemma 2 (see proof in Appendix A):

Lemma 2: Let xi, i = 1, ..., n, n independent random
variables. Let ai > 0 and Pi ∈ (0, 1) i = 1, ..., n, such that
∀i, P (|xi| ≥ ai) ≤ Pi. Then

P

(∑
i

|xi| ≤
∑
i

ai

)
≥

n∏
i=1

(1− Pi) (32)

Applying Lemma 2 to the set of (r2 − 1) possible α 6= γ
from (30) yields a probabilistic bound on the relative aliasing
error when Zγ 6= 02:

P

∣∣∣∣∣∣
∑
α6=γ

Z̃α

Z̃γ

Gα(k
′)

∣∣∣∣∣∣ ≤ √2
∑
α6=γ

∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ δ′α


≥
(
1− 4e−c

2nd

)r2−1
(33)

Given some desired relative error p ∈ (0, 1) and lower
probability P2 ∈ (0, 1), one needs to find whether there exists
c = c2(p) > 0 such that ∀k′ ∈ DHR

√
2
∑
α6=γ

∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ (c‖qα‖1ε+ f(qα, εr))︸ ︷︷ ︸
δ′α

≤ p, (34)

A necessary condition appears as

p > p0(ε, r, Z) =
√
2
∑
α6=γ

∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ f(qα, εr) (35)

Then one can define

c2(p) = inf
qγ

sup
c
{c : qγ obeys ineq.(34)} (36)

If c2(p) > 0 is well defined, then there exists a minimum
number of images per position nd such that(

1− 4e−c2(p)
2nd

)r2−1
≥ P2, (37)

that is

nmind =
1

c2(p)2
log

 4

1− P
1

r2−1

2

 (38)

In the special case r = 2, (31) yields the even tighter bound:

nmind =
1

c2(
√
2p)2

log

(
2

1− P
1
3
2

)
. (39)

One obtains a bound on the aliasing error relative to |Z̃(qγ)|:

P

∣∣∣∣∣∣
∑
α6=γ

Z̃α

Z̃γ

Gα(k
′)

∣∣∣∣∣∣ ≤ p
 ≥ P2 (40)

This relative error provides a good estimate of the relative error
on the HR image before deconvolution. It permits to evaluate
the contribution of aliasing errors to the reconstructed blurred
HR image Z. This necessitates the knowledge of the true HR
image : one can also use the reconstructed image a posteriori

2Note that one should first check that every term in the products are positive
to ensure that the inequality above be relevant, which will be guaranteed by
the final criterion.
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to indicate which frequencies are most suspected to contribute
to aliasing effects. Each specific image has a specific Fourier
spectrum so that special aliasing effects may appear and make
SR difficult, at least for a small set of frequencies for which
the sum of aliasing terms in (40) may be particularly large. To
propose a generic a priori estimate of the order of magnitude
of this aliasing error, we need to make some assumptions on
the content of images. It is well accepted that natural images
often exhibit a power law energy spectrum ∝ 1/‖k′‖2(1+η)2

where usually |η| � 1 [22]–[24]. Then∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ = |H̃(qα)|
|H̃(qγ)|

(
‖qγ‖2
‖qα‖2

)1+η

(41)

Therefore the strongest constraints are due to high frequencies
(large k′ or qγ). Note the dependence on the blur kernel
which acts as a low-pass filter: the presence of H̃ in (41) will
have adverse effects. Searching for lower-bounds, forthcoming
computations consider the most favourable case when H̃ = 1.
See section IV for a numerical illustration of the effect of a
realistic Gaussian blur kernel. An approximate computation in
App. D shows that the highest frequencies define c∗2(p) as

c∗2(p) =
p− p∗0(ε, r)
a∗(ε,H)

(42)

where

p∗0(ε, r) ' b0
√
2
η
π2ε2r2(r2 − 1) (43)

a∗(ε,H) =
√
2
∑
α6=γ

|H̃(qα)|
|H̃(qγ)|

(
‖qγ‖2
‖qα‖2

)1+η

‖qα‖1ε

' a02
1+η/2ε(r2 − 1) (if H̃ = 1) (44)

where the factor (r2−1) corresponds to the number of aliasing
terms; the coefficient b0 ' 2/3 for r = 2 and b0 ' 1.2 for
r ≥ 3 and it is almost independent of the size N of the image
for N ≥ 32; a0 ' 0.63 for r = 2 and a0 ' 1.3 for r ≥ 3 (see
Appendix D). In the general case, (43) & (44) interestingly
permit to make explicit the dependence on r, ε and η. Thus, for
a power-law spectrum image, the required minimum number
nmind of images/position is:

nmind =
a∗2(ε,H)

(p− p∗0(ε, r))2
log

 4

1− P
1

r2−1

2

 (45)

One observes that p0/ε2r2 essentially depends on r as soon
as ε is small enough. Figure 3 illustrates numerical orders of
magnitude of reachable (p, ε) such that p > p∗0(ε, r) for given
r under the assumption of a power law spectrum. Pairs of
acceptable parameters (p, ε) for which guaranteed error bounds
exist are at the bottom right of each curve. Typical values can
be evaluated numerically. For instance assuming η = 0, to
guarantee an error smaller than 10%, r = 2, p = 0.1 ⇒ ε ≤
0.036 or r = 6, p = 0.1⇒ ε ≤ 0.0035. Observe that ε should
rapidly decrease as r becomes larger when some given error
level p with high probability is desired. Note the logarithmic

dependence on (1−P
1

r2−1

2 ) which permits to choose P2 close
to 1 without increasing nmind a lot.

Fig. 3. Pairs of parameters (p, ε) for which SR with guaranteed error bounds
is feasible are at the bottom right of the curve for each SR factor r indicated
on the right margin, see (43).

By using our results in the other way, one can also deduce
a map of confidence intervals p(q) for fixed nd. In practice,
the acquisition protocole may impose some fixed nd. Then
one can set the value of c2(p) in (34) and compute a map of
confidence intervals p(q) in the Fourier domain, taking into
account the spectrum of the true HR image. Since it is not
known, the Fourier transform may be replaced by its estimate.
This procedure helps identifying which frequencies are more
likely to contribute to aliasing errors.

C. Main results

The analysis of the estimate X of the blurred image Z =
HYHR by the proposed algorithm gives in the spectral domain,
see (11) & (12):

X̃(k′) = Z̃(k′)Gγ(k
′) +B(k′) (46)

B(k′) =
∑
α6=γ

Z̃(k+αN)Gα(k
′) (47)

Theorem 3 below gathers the necessary assumptions on the
acquisition system (r, ε, IE[bdj ]), the scenes (spectrum expo-
nent η in (41)) and the desired confidence level (p1 & P1, p2
& P2) to obtain two fundamental concentration inequalities
for the approximation and the aliasing terms respectively.

Theorem 3:
Acquisition system - Let r be the SR factor. Let 0 < ε < 1/πr
be the maximum error of the positioning system (in LR
pixel units). Assume bounded errors bdj on positions within
(−εr, εr) in both x and y directions with a possible constant
bias IE[bdj ] (in HR pixel units). Assume that nd images are
taken for each one of the r necessary reference positions
corresponding to d ∈ (0, r − 1)2 HR pixel units.
Confidence intervals - Let p1 ∈ (0, 1), resp. p2 ∈ (0, 1) be
the desired maximum relative error on the main approximation
term, resp. the sum of aliasing terms, of the reconstructed
image (p1 & p2 will generally be close to 0).
Let P1 ∈ (0, 1) be the desired level of confidence in the
relative error p1 due to the main approximation term. Let
P2 ∈ (0, 1) be the level of confidence in the relative error
p2 due to the aliasing term (P1 and P2 will be close to 1).
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Technical assumptions - Assume that one can define c1 > 0
and c2 > 0 by (dependences are omitted)

c1 =
1

2
√
2πε

(
p1 −

√
2π〈‖IE[bd,j ]‖2〉d − 2π2ε2r2

)
(48)

c2(p2) = inf
qγ

sup
c
{c : Lγ(c) ≤ p2} (49)

where function f is defined by (76) and

Lγ(c) =
√
2
∑
α6=γ

∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ (c‖qα‖1ε+ f(qα, εr)) (50)

If
nd ≥

8

c1(p1)2
log

(
4

1− P1

)
(51)

then the following probabilistic inequality holds:

P

({
∀k′ ∈ DHR,

∣∣∣∣Gγ(k
′, nd)

r2
− 1

∣∣∣∣ ≤ p1}) ≥ P1 (52)

If

nd ≥



1

c2(
√
2p)2

log

(
2

1− P
1
3
2

)
if r = 2,

1

c2(p)2
log

 4

1− P
1

r2−1

2

 if r ≥ 3.

(53)

then the following concentration inequality holds:

P

({
∀k′ ∈ DHR,

∣∣∣∣∣B(k′, nd)

Z̃(k′)

∣∣∣∣∣ ≤ p2
})
≥ P2 (54)

Let us comment on Theorem 3. In ideal experimental condi-
tions, with no positioning bias and εr ≤

√
p/2π2,

c1(p) '
p− 2π2ε2r2

2
√
2πε

(55)

The quantity c2(p2) can be computed numerically for some
given specific image. A necessary condition to the existence
of c2(p2) is

p2 > p0(ε, r, Z) =
√
2 sup

qγ

∑
α6=γ

∣∣∣∣∣ Z̃α

Z̃γ

∣∣∣∣∣ f(qα, εr) (56)

In the most favourable case when H̃ = 1 (no blur) and the
image has a power law Fourier spectrum ∝ ‖k′‖−2(1+η)2 , (43)
permits to estimate p0(ε, r, Z). Then c2(p2) can be computed
from (42) which is easy to use and gives quantitative indica-
tions about nd.

Corollary 4: Under the assumptions of Theorem 3 and
denoting c1 = c1(p1) and c2 = c2(p2), if a sufficient number
nd of images per position is used, one has the following
concentration inequality which guarantees a small relative
error with high probability:

P

({
∀k′ ∈ DHR,

∣∣∣∣∣X̃(k′)− Z̃(k′)
Z̃(k′)

∣∣∣∣∣ ≤ p1 + p2

})
≥ P2 − (1− P1)

≥
(
1− 4e−c

2
2nd

)r2−1
− 4e−

c21nd
8 (57)

Fig. 4. SNR for high frequencies only is proportional to log10 nd. Results
from 100 Monte-Carlo simulations with uniform distribution of positions with
ε = 0.01 for 11 images (Lena, Barbara, Boat...).

Proof : this is a direct consequence of Lemma 1 p. 4 applied
to the sum of the approximation term |Gγ/r2 − 1| and the
aliasing term |B/Z̃|.

Corollary 4 gives a probabilistic bound to the total rela-
tive error on each frequency component of the reconstructed
blurred image Z using the algorithm from [1] before the
deconvolution step. Note that the bound in probability in (57)
tends to 1 exponentially fast when nd →∞. In practice, one
can guarantee a global relative error ≤ 10% with probability
≥ 0.90 by choosing (pi, Pi) = (0.05, 0.95), i=1,2. This result
provides a precise quantitative analysis of the reconstruction
error. One limitation of the present study is that Z̃(k′) =
H(k′)YHR(k

′) is the blurred super-resolved image resulting
from the fusion of LR images. However the deconvolution
step is common to every acquisition system and remains a
limitation of any SR approach. Of course, the most favourable
situation is when H(k′) is close to 1, corresponding to a Dirac
PSF in the spatial domain. Then Corollary 4 gives a good
indication of the quality of high resolution imaging by using
multiple acquisitions per positions.

In summary, we propose a detailed analysis of the recon-
struction error of a fast method in the Fourier domain. It
provides an a priori estimate of the number of images/position
necessary to guarantee a given quality of reconstruction of
each frequency (Fourier mode) with high probability. Based
on Monte Carlo simulations, it also allows to estimate a
posteriori a map of confidence levels in the frequency domain.
Section IV will show numerically that these bounds are tight.
We have worked on the intermediate reconstructed image
Z before the deconvolution step that is common to most
SR methods. Theorem 3 can be used based on the generic
assumption of a power-law spectrum that is usual for natural
images or more specifically for one specific image.

D. What about the SNR ?

We have demonstrated theoretical bounds to control the
quality of the super resolved image in the Fourier domain.
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However this result deals with each frequency separately. Now
we aim at identifying the dependence of the SNR between the
reconstructed image and the ground truth. Again, this SNR
deals with Z not YHR and it measures the quality of the fusion
step and does not consider the posterior deconvolution effects.
We consider the mean square error :∥∥∥X̃ − Z̃∥∥∥2

2
=
∑
k

∣∣∣∣∣X̃(k′)− Z̃(k′)
Z̃(k′)

∣∣∣∣∣
2

︸ ︷︷ ︸
α2

k′

·|Z̃(k′)|2 (58)

and compare it to the energy of the original HR image. The
|Z̃(k′)| are considered as fixed (the ground truth) while the
αk′ are random variables here (relative error estimates). Now
we show that IEα2

k′ is of the order of 1/nd for all k′ so that
SNR ∝ log nd. From (57) in Corollary 4,

P (|αk′ | ≤ p) ≥ 1− 4r2e−c
2nd (59)

where c2(p) = min(c22(p), c
2
1(p)/8). Note from (42) & (55)

that the typical order of magnitude of c1(p) and c2(p) is p/ε
so that we can consider that there exists λ > 0 such that
c2 ≥ λp2/ε2. Then

IE[α2
k′ ] ≤

∫
|αk′ |≤p

α2
k′p(αk′)dαk′ +

∫
|αk′ |≥p

α2
k′p(αk′)dαk′

≤ p2 + 2
∞∑
n=1

∫ (n+1)p

np

α2
k′p(αk′)dαk′

≤ p2 + 4r2
∞∑
n=1

e−λn
2p2nd/ε

2

(n+ 1)2p2

≤ p2(1 + e−λp
2nd/ε

2

K(nd)) (60)

where K(nd) is finite, decreasing with nd and independent
of k′. Choosing p2 = 1/nd, one obtains for all k′ ∈ DHR,

IE[α2
k′ ] ≤

1

nd
(1 + e−λ/ε

2

K(nd)) (61)

and consequently taking the expectation of (58),

IE
[∥∥∥X̃ − Z̃∥∥∥2

2

]
=
∑
k′

IE[α2
k′ ]|Z̃(k′)|2

≤ 1

nd
(1 + e−λ/ε

2

K(nd))‖Z̃‖22 (62)

Finally, using Parceval’s equality we get:

SNR(X̃, Z̃) ≥ 10 log10 nd +K (63)

where K is a constant depending on the energy of the original
image. As a function of the number of images per position
nd, the SNR is improved with a magnitude of 10dB/decade.
We can compare this result with the weak Cramer-Rao lower
bound on the reconstruction error Tweak ∝ 1/

√
K + 1 where

K + 1 is the number of images in [11] : at best, the SNR
can grow as log(number of images) as predicted by (63).
This indicates that the proposed method is efficient at the best
expected level [5]–[12]. Fig. 4 shows SNR computed for high
frequencies only (the reconstructed HR part of the spectrum).
Results were computed from 100 Monte-Carlo simulations

Fig. 5. Minimum number nd(k
′) to guarantee an aliasing error ≤ 5% with

probability ≥ 0.95 for all k′ ; ε = 0.001, r = 4.

with uniform distribution of position errors with ε = 0.01
for 11 images (Lena, Barbara, Boat...). This global indication
that the SNR is ∝ log nd completes previous detailed bounds
for each Fourier component.

IV. NUMERICAL RESULTS

To illuminate the complex interplay between the many
parameters involved, we study the problem from various view-
points. Section IV-A studies the lower-bound on the number
nd of images per position to guarantee a given maximum
errror level. Section IV-B compares our theoretical results to
numerical estimates of probabilities from Monte-Carlo simu-
lations. Section IV-C studies the connection between results
in the Fourier domain and in the spatial domain. Section IV-D
shows how the presence of noise and the nature of the
blur operator influence the results. Monte-Carlo simulations
use 100 realizations of the acquisition procedure assuming a
uniform distribution of position errors in (−ε, ε). When no
image is specified, the power law spectrum assumption is used.

A. How many images to ensure some maximum error level ?

Fig. 5 shows the dependence of the required number of
images nd(k′) on the frequency k′ to guarantee that aliasing
contribution is less than p1 = 0.05 with probability P1 ≥ 0.95
when r = 4 and ε = 0.001 for an image with a power
law spectrum. As expected, the recovery of high frequencies
requires more LR images. The results are nearly independent
of the size N of images for N ≥ 32. A similar picture (not
shown) stands for the approximation term. In general (not
always) the control of aliasing effects is the most constraining.

Tab. II gathers the constraints for various values of r and ε
for images with a power law spectrum (η = 0 here). Numbers
are computed from (51) & (53) in Theorem 3 for parameters
(pi, Pi) = (0.05,0.95), i = 1, 2. This choice of equidistribution
of error is certainly not optimal but of practical use with re-
spect to Corollay 4 garantying an error level ≤ p1+p2 = 0.10
with probability larger than P2 − (1−P1) = 0.90. The larger
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images with a power law spectrum
ε 0.01 0.001 0.0001

approx. / alias app. / alias app. / alias
r = 2 157 / 64 2 / 1 1 / 1

PSF(0.5) 157 / 6108 2 / 23 1 / 1
r = 3 267 / NR 2 / 13 1 / 1

PSF(0.5) 267 / NR 2 / 540 1 / 5
r = 4 817 / NR 2 / 43 1 / 1

PSF(0.5) 817 / NR 2 / 2228 1 / 13
r = 5 651162 / NR 2 / 168 1 / 2

PSF(0.5) 651162 / NR 2 / 73025 1 / 43
r = 6 NR / NR 2 / 516 1 / 3

PSF(0.5) / NR 2 / NR 1 / 82
r = 7 NR / NR 2 / 3486 1 / 6

PSF(0.5) / NR 2 / NR 1 / 189
r = 8 NR / NR 2 / NR 1 / 9

PSF(0.5) / NR 2 / NR 1 / 311
TABLE II

MINIMUM nd FOR ACCURACY < 5% WITH PROBABILITY > 0.95 ON
APPROX./ALIASING AS A FUNCTION OF ε IN LR PIXEL UNITS. PSF(0.5) IS

GAUSSIAN BLUR OF WIDTH 0.5; NR=‘NOT REACHABLE’ (SEE TEXT).

r, the larger the need for multiple images. The smaller the
positioning uncertainty ε, the smaller the lower bound on nd.

As an example, we consider a setting where the sensor
has LR pixels of width ' 1 µm. The random bias on the
positioning system can be reasonably expected to be between
1 and 10 nm corresponding to ε ' 0.001−0.01 LR pixel. The
acquition rate of images is usually of the order of 10 im./s
(e.g. in a DSLR). In practice, r2 displacements are used so
that a minimum acquisition time of about r2 × nd × 0.1s is
necessary. For r = 2 and ε = 0.01, relative errors ≤ 5% on
the restored image can be guaranteed with probability ≥ 0.95
by using at least nd = 157 (approximation), resp. nd = 64
(aliasing) images/position. Taking into account both contribu-
tions (approximation + aliasing) implies nd ≥ max(157, 64)
so that nd = 157 im./pos. are necessary. The acquisition time
would be r2 × 157× 0.1s = 63s. With a position accuracy of
ε = 0.01 only, the potential for SR of the proposed technique
remains very limited : for r = 3 there is no way to guarantee
a quality of reconstruction with an aliasing error less than
5% (NR = ”Not Reachable” in Tab. II). When ε = 0.001
the acquisition of r2 × 13 = 117 images (' 12s at 10 im./s)
permits to guarantee a relative error ≤ 10% with probability
≥ 0.90. For r = 4, more than 43 im./pos. are necessary which
leads to an acquisition time of about 69s that is reasonable for
still scenes. For r = 6, r2 × 516 = 18576 images would take
' 30 min at 10 im./s which becomes technically difficult,
even regardless of other physical limitations of the system.
One also observes that a registration accuracy of 10−4 LR
pixels would be sufficient to ensure good SR conditions even
for large SR factors. Remember that these predictions on nd
are based on the generic assumption of a power law spectrum
which is statistically common to many natural images. In full
rigor, even though these numbers are of great use in practice
to calibrate the acquisition system, they should be estimated
for each image individually: then the full map of the bounds
in the Fourier domain can be computed.

For comparison, [13] showed that only a special set of
vertices is really useful to SR; more images at other positions
will bring marginal supplemental information. However the

Fig. 6. Fourier map of the lower bound on the aliasing error p2 within (0, 0.1)
for Lena. The red square indicates LR frequencies. r = 2 & ε = 0.01: for
black points (0.9% points are > 0.1), SR with guaranteed error bound is not
feasible (100 MC simulations).

uncertainty on registration was not considered. No noise
was introduced in synthetic experiments, and the registration
was assumed exact. In real experiments, the uncertainty on
positions was about 0.1 LR pixel: the authors observed no
improvement when using more and more images. The present
study confirms this conclusion and shows that a 0.1 pixel
registration accuracy is not sufficient to expect any significant
improvement by using more LR images, see tab. II. Misregis-
tration should remain typically smaller than 0.01 LR pixel.

B. How realistic and tight are these bounds ?

The bounds from Theorem 3 can first be considered to
dimension the acquisition system. They can also be used to
check the reliability or accuracy of some specific restored
image. Using (56) we can compute a map of the lower bound
on the aliasing error p2 in the HR Fourier domain given
the motion accuracy ε: this map shows the best achievable
relative accuracy for each frequency k′. For Lena, r = 2,
ε = 0.01, fig. 6 shows the map computed from 100 Monte-
Carlo simulations over uniformly distributed positioning errors
in (−ε, ε). Gray points are such that a sufficient number of
images/position should guarantee a relative error < 10% with
high probability. Few black points where the lower bound of
p2 is > 0.1 correspond to spatial frequencies for which an
error < 10% cannot be guaranteed, whatever the number nd of
images/position mainly because of excessive aliasing. As ex-
pected, we observe that high frequencies are the most difficult
to reconstruct accurately. Fig. 7(left) shows in Fourier domain
the probability that the aliasing error at k′ be ≥ 10% when
using 32 im./position for Barbara with ε = 0.01 and r = 2.
Fig. 7(right) shows the number nd of images necessary to
ensure that aliasing error ≤ 10% according to Theorem 3. Note
the consistency between these pictures. Aliasing effects are a
direct consequence of the image spectrum: some frequencies
are much more difficult to reconstruct and call for a larger nd.
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Fig. 7. In Fourier domain, for image Barbara, r = 2 and ε = 0.01: (left)
probability that relative error due to aliasing be ≥ 0.1 using nd = 64 im/pos.
; (right) minimum number of images to ensure an aliasing error < 10%.

C. How are the errors localized in the spatial domain ?

We use Monte-Carlo simulations to study the localization
of errors in the spatial domain. By selecting the less reliable
frequency components of an image where the aliasing error
is ≥ 10% with probability ≥ 0.1, one can reconstruct the
corresponding spatial counterpart to localize and quantify their
contribution. For r = 2, ε = 0.01, these unreliable components
weight for a SNR of -27.2dB. The present theoretical analysis
permits such a selection of frequencies as well. For a given
number nd of images/position one can reconstruct the spatial
counterpart of the less reliable frequencies where the aliasing
error is expected to be ≥ 10% with probability ≥ 0.1
according to Theorem 3. Fig. 8 shows such a picture for
Barbara for r = 2, ε = 0.01 and nd = 256 im./pos., to
be compared with the minimum nd = 157 in Tab. II. As
expected, the spoiled regions are the most textured ones as
well as some contours (better seen on screen). Remember that
the analysis focused on the modulus of Fourier spectra while
phases carry the location information. Maximum gray levels
are about 4 and the standard deviation is of 0.67 (to compare
with 255 in 8 bits). These ”non reliable” components then
weight for a SNR of -25.8 dB w.r.t. superresolved frequencies
only. At least on this example, our theoretical predictions both
qualitatively and quantitatively agree with Monte Carlo results.
Our analysis not only gives indications to choose nd but also
produces a detailed map of the error distribution both in the
Fourier domain and in the spatial domain.

D. How do noise and PSF influence performances ?

The influence of noise and PSF are two important questions.
The problem of noise is not the most critical: averaging nu-
merous images attenuates additive noise. The present approach
considers additive contributions of numerous images affected
by independent realizations of noise: this naturally tends to
increase the SNR. This is easily checked experimentally and
not illustrated here for sake of briefness. If the noise in LR
images was too strong to be compensated by simple averaging,
the utility of SR would be questionable since the main concern
would first be to access reliably denoised information at low
resolution, giving up hopes for high resolution. Here we
assume that LR images are of sufficient quality. The question
of the PSF is a much bigger concern since it is involved in
the error analysis. Of course frequencies where H̃(k′) = 0 are

Fig. 8. (l.) Barbara, (r.) contribution of the less reliable frequencies.

lost and we already mentionned that the present analysis is not
valid for these frequencies. Moreover the structure of aliasing
is influenced by the PSF in an important manner, see (41). All
the experiments above considered the ideal situation of a Dirac
PSF where H̃(k′) = 1 ∀k′. The lines ‘PSF(0.5)’ in Tab. II
show how the lower bounds of nd are modified in presence
of a Gaussian PSF of width 0.5. As expected it dramatically
influences the estimates, e.g. for (r, ε) = (2, 0.001) as the
bound becomes 18 in place of 1. The control of the PSF is
a real stake in the design of a SR system: the present study
permits to quantitatively evaluate its influence.

V. CONCLUSION

We have presented a theoretical analysis of a cheap and
fast SR technique which takes benefit from any accurate
controlled positioning system, e.g. piezoelectric actuators for
sensor shifting, now currently available on many optical
systems. Such an approach comes with some constraints. It
requires a static scene captured using a static camera in good
lighting conditions to avoid a high level of noise. It may
also suffer from a lack of depth of field or an inhomogeneity
of translations between images due to parallax for instance.
However the statistical analysis of the algorithm proposed
in [1] produces error confidence intervals as a function of
the number of available images. This is made possible by
the simplicity of the algorithm itself and by exploiting the
averaging effect of LR images taken at positions that are
randomly distributed around the same reference position. This
approach is cheap and realistic to enhance the resolution of
many devices. Even not state of the art, theoretical guarantees
are a strong advantage of the approach when the reliability
of the restored image is at stake, e.g. in scientific imaging
(biology, astronomy...). This analysis considers a zero-mean
noise which gets attenuated in the HR image reconstruction by
fusing many images. The resulting probabilistic upper bounds
are a good complement to the Cramer-Rao lower bounds
in [11] and are nearly tight since the order of magnitudes are
similar. Numerical experiments illustrate our results in both the
Fourier and spatial domains as well as the effect of the PSF.
A strong aspect of this work is in its predictions for practical
implementation. Such results also give precious hints on the
design of SR systems. Future works may investigate similar
probabilistic bounds for more sophisticated SR algorithms
where some reconstruction priors are used [25]–[28].
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Fig. 9. Illustrations for the proof of Lemma 1.

APPENDIX A
PROOFS OF LEMMA 1 & 2

Proof of Lemma 1:
√
x21 + x22 ≥

√
a21 + a22 ⇒ |x1| ≥ a1 or

|x2| ≥ a2 proves (17), see figure 9(a). |x1| + |x2| ≥ a1 + a2
⇒ |x1| ≥ a1 or |x2| ≥ a2 proves (18), see fig. 9(b) where
the grey lozenge represents the region |x1|+ |x2| ≤ a1 + a2.

Proof of Lemma 2: ∀i, |xi| ≤ ai ⇒
∑
i |xi| ≤

∑
i ai so that

P (
∑
i |xi| ≤

∑
ai) ≥ P ({∀i, |xi| ≤ ai}). Since the xi are

independent, P ({∀i, |xi| ≤ ai}) =
∏
i P (|xi| ≤ ai). Noting

that ∀i, P (|xi| ≤ ai) ≥ (1− Pi) concludes the proof. QED.

APPENDIX B
PROOF OF CONCENTRATION INEQUALITY (20)

As far as the real part of BG in (16) is concerned:

Re (BG) =
1

r2nd

∑
d,j

cos (qγ .bdj)− IE[cos (qγ .bdj)] (64)

The power series development of the cos function yields:∣∣∣∣cos(qγ · bdj)− 1 +
(qγ · bdj)

2

2

∣∣∣∣ ≤ ‖qγ‖41ε4r
24

(65)

so that

|Re (BG)| ≤

∣∣∣∣∣∣ 1

2r2nd

∑
d,j

(qγ .bdj)
2 − IE[(qγ .bdj)

2]

∣∣∣∣∣∣
+
‖qγ‖41ε4r

12
(66)

The first term is the sum of bounded centered random variables
since (qγ .bdj)

2 and IE[(qγ .bdj)
2] belong to (0, ‖qγ‖21 ε2r).

Applying Hoeffding’s inequality for random variables in
(−‖qγ‖21 ε2r, ‖qγ‖21 ε2r) and t = δγ = c(qγ)‖qγ‖1ε yields:

P

(
|Re (BG)| ≥ δγ +

‖qγ‖41ε4r
12

)
≤ 2e

− c2nd
2‖qγ‖21ε

2
r (67)

since
∑

d,j involves r2nd terms and εr = εr. Turning to the
imaginary part, the same kind of arguments are applied to

Im (BG) =
1

r2nd

∑
d,j

sin (qγ .bdj)− IE[sin (qγ .bdj)] (68)

to show that

|Im (BG)| ≤∣∣∣∣∣∣ 1

r2nd

∑
d,j

(qγ · bdj − IE[qγ · bdj ])

∣∣∣∣∣∣+ ‖qγ‖31ε3r
3

(69)

We prove a concentration inequality similar to (67) by ap-
plying Hoeffding’s inequality to the first term of (69) since
|q · b− IE[q · b]| ≤ 2‖q‖1 εr. For δγ = c(qγ)‖qγ‖1ε > 0,

P

(
|Im (BG)| ≥ δγ +

‖qγ‖31ε3r
3

)
≤ 2e−c

2nd/8 (70)

Using Lemma 1 to combine (67) and (70) yields:

P

|BG| ≥
√(

δγ +
‖qγ‖41ε4r

12

)2

+

(
δγ +

‖qγ‖31ε3r
3

)2


≤ 2

(
e−c

2nd/8 + e
− c2nd

2‖qγ‖21ε
2
r

)
(71)

Note that ‖qγ‖41ε
4
r

12 ≤ ‖qγ‖31ε
3
r

3 as soon as εr ≤ 4/π. Remark
that 2‖qγ‖21ε2 ≤ 8π2ε2r < 8 for ε < 1/πr. This yields (20).

APPENDIX C
PROOF OF CONCENTRATION INEQUALITIES (30) & (31)

First, we deal with the real part of Gα(k
′)in (28):

Re (Gα(k
′)) =

1

r2nd

∑
d,j

cos (θαd − qα · bdj) (72)

The power series development of cosinus around θαd yields:

cos(θαd − qα · bdj)− cos (θαd)− sin (θαd) (qα · bdj) =

cos(θαd)
∞∑
k=1

(−1)k (qα · bdj)
2k

(2k)!

+ sin(θαd)
∞∑
k=1

(−1)k (qα · bdj)
2k+1

(2k + 1)!
(73)

The majorization of the rest of alternating power series yields:

|cos(θαd − qα.bdj)− cos θαd − (qα.bdj) sin θαd|

≤ | cos θαd|
|qα · bdj |2

2
+ | sin θαd|

|qα · bdj |3

6
(74)

As a consequence,

Re (Gα(k
′)) ≤ f(qα, εr)

+

∣∣∣∣∣∣ 1

r2nd

∑
d,j

cos θαd + (qα · bdj) sin θαd

∣∣∣∣∣∣ (75)

where

f(qα, εr) =
‖qα‖21ε2r

2
+
‖qα‖31ε3r

6
(76)

Thanks to (94) in Appendix E,

Re (Gα) ≤

∣∣∣∣∣∣ 1

r2nd

∑
d,j

(qα · bdj) sin θαd

∣∣∣∣∣∣+ f(qα, εr) (77)

For α − γ ∈ {0, r/2}2, θαd ∝ π ⇒ sin θαd = 0 for all d
and (74) yields the deterministic tight inequality

Re (Gα(k
′)) ≤ ‖qα‖21ε2r

2
(78)
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Turning to the imaginary part, we follow the same lines by
mainly replacing ’cos’ by ’sin’ in (75) & (77) starting from

|sin(θαd − qα.bdj)− sin θαd + (qα.bdj) cos θαd|

≤ | sin θαd|
|qα.bdj |2

2
+ | cos θαd|

|qα.bdj |3

6
(79)

to obtain the following bound on the imaginary part:

|Im (Gα)| ≤

∣∣∣∣∣∣ 1

r2nd

∑
d,j

(qα.bdj) cos θαd

∣∣∣∣∣∣+f(qα, εr) (80)

Then one needs to bound the sums in the r.h.s. of (77) & (80).
Assuming that the variations of the bias IE[qα · bdj ] around
〈IE[qα · bdj ]〉d for fixed d are negligible, one observes that
there is (approximately) no contribution of the bias in the sums
of (77) & (80) thanks to (94) & (95). Indeed,

1

r2nd

∑
d,j

cos(θαd)〈IE[qα.bdj ]〉d) ' 0 (81)

Since |qα ·bdj | ≤ ‖qα‖1εr, we apply Hoeffding’s inequality
to (77) and (80) for δα = c‖qα‖1ε, and for α−γ /∈ {0, r/2}2:

P (|Re (Gα(k
′))| ≥ δ′α) ≤ 2e

− 2r2n2
dc

2

4
∑

d,j sin2 θαd (82)

P (|Im (Gα(k
′))| ≥ δ′α) ≤ 2e

− 2r2n2
dc

2

4
∑

d,j cos2 θαd (83)

where δ′α = c‖qα‖1ε + f(qα, εr). Using (96) & (97) in
App. E, Lemma 1 yields inequalities (30) & (31).

APPENDIX D
COMPUTING c2(p) IN (36)

Here we estimate c2(p) in (36) under assumptions of Theo-
rem 3. If one neglects the effect of blur, we aim at computing
the maximum value of c2(p) such that for all qγ ,

a c2(p) + p0 ≤ p. (84)

after little reorganization of (34) where we use

p0 '
√
2

2

∑
α6=γ

|Y (qα)|
|Y (qγ)|

‖qα‖21ε2r (85)

a =
√
2
∑
α6=γ

|Y (qα)|
|Y (qγ)|

‖qα‖1ε. (86)

as soon as εr � 1 so that cubic terms can be neglected. We
first study (85). We focus on the highest frequencies only,
typically qγ = (π − 2π

rN , π −
2π
rN ). As a consequence, note

that ‖qγ‖1+η2 ' (
√
2π)1+η . Then, one needs to detail:∑

α6=γ

‖qα‖21
‖qα‖1+η2

=
π2

π1+η

∑
β 6=(0,0)

‖vrN − 2β/r‖21
‖vrN − 2β/r‖1+η2︸ ︷︷ ︸

F (r,N)

(87)

where vrN = (1 − 2/rN, 1 − 2/rN). The sum F (r,N) can
be computed numerically. It weakly depends on N so that

F (r,N) '

 2 =
2

3
(r2 − 1) if r = 2,

1.2(r2 − 1) if r ≥ 3.
(88)

For r = 2, computations are easy and only 2 terms both equal
to 1 appear in F (r,N). For r ≥ 3, one can observe that
‖qα‖1 ∼ ‖qα‖2 (norms are equivalent) so that when η = 0
one expects that F (r,N) ∝ (r2 − 1), the number of terms in∑

β 6=(0,0). This is due to the fact that 〈‖qα‖1〉α6=γ ' π for
large r. As a result, one obtains in good approximation that :

p0 ' b0
√
2
η
π2ε2r2(r2 − 1) (89)

where b0 = 2/3 if r = 2 or b0 ' 1.2 if r ≥ 3. Now let study
coefficient (86) along the same lines.

a '
√
2
∑
α6=γ

‖qγ‖1+η2

‖qα‖1+η2

‖qα‖1ε (90)

Using that ‖qα‖1 ∼ ‖qα‖2 (within constant factors), one
expects that when η = 0,

a ∝ 21+η/2(r2 − 1)ε (91)

Numerical estimates for values 2 ≤ r ≤ 8 show that

a = a0 × 21+η/2ε(r2 − 1) (92)

where a0 varies with η around a typical value of 1.3 for η = 0,
e.g. a0 ' 0.95 if η = −0.2 and a0 ' 1.85 if η = 0.2 for all
r ≥ 3. For r = 2, one finds a0 ' 0.63, resp. 1.14 and 3.04
when η = −0.2, resp. 0 and 0.2.

APPENDIX E
PROPERTIES OF COMPLEX ROOTS OF UNITY

θαd =
2π

r
(α− γ)d =

2π

r
δd (93)

where α and γ are integers in (0, r− 1)2. The set of the θαd

matches the set of products of complex roots of unity so that:∑
d

cos

(
2π

r
(α− γ)d

)
=
∑
d

cos(θαd) = 0 (94)

∑
d

sin

(
2π

r
(α− γ)d

)
=
∑
d

sin(θαd) = 0 (95)

∑
d

cos2(θαd) =

{
r2 if α− γ ∈ {0, r/2}2,
r/2 otherwise. (96)

∑
d

sin2(θαd) =

{
0 if α− γ ∈ {0, r/2}2,
r/2 otherwise. (97)

Properties (94) and (95) come from the observation that

∑
d∈(0,r−1)2

eiθαd =
∏
i=1,2

 ∑
di∈(0,r−1)

ei2π(αi−γi)di/r

 (98)

where each factor in the r.h.s. is zero since α 6= γ and for
any integer 1 ≤ δ ≤ r − 1,

r−1∑
d=0

ei2πδd/r =
1− ei2πδ

1− ei2πδ/r
= 0 (99)

Now we prove (96) and (97). To this aim we need:

cos2(θαd) =
1 + cos(2θαd)

2
(100)

sin2(θαd) =
1− cos(2θαd)

2
(101)
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We need to evaluate
∑r−1
d=0 e

i2θαd . For 0 ≤ δ ≤ r − 1,

r−1∑
d=0

ei4πδd/r =


∑r−1
d=0 1 = r if δ ∈ {0, r/2},

1− ei4πδ

1− ei4πδ/r
= 0 otherwise,

(102)
so that using (98) again∑

d

ei2θαd =

{
r2 if α− γ ∈ {0, r/2}2,
0 otherwise. (103)

Taking the real part yields
∑

d cos(2θαd). The sum of (100)
& (101) over d ∈ (0, r − 1)2 yield (96) & (97).

APPENDIX F
EXPECTATIONS IE[Gα]

Taking the expectation of (13) with respect to bdj yields:

IEGα(k
′) =

∑
d

e−i
2π
r (α−γ)·dIE

[
e−i

2π
rN k′α·bdj

]
(104)

Then let χ(k′) = IE
[
e−i

2π
rN k′·bdj

]
the characteristic function

of the distribution of bdj . It results from properties of roots
of unity above that∑

d

e−i
2π
r (α−γ)d =

{
0 when α 6= γ,
r2 when α = γ

(105)

so that denoting Kronecker’s symbol by δγα:

IEGα(k
′) = δγα χ(k′) (106)

APPENDIX G
THE Gα ARE UNCORRELATED

The correlation between Gα1 and Gα2 for αi 6= γ is:

IE[Gα1G
∗
α2

] =
1

n2d

∑
dd′

e−i
2π
rN (α1−γ)dNe+i

2π
rN (α2−γ)d′N

×
nd∑
j,`=1

IE
[
e+i

2π
rN (k′+α1N)·bdje−i

2π
rN (k′+α2N)·bd`

]
︸ ︷︷ ︸

βj`

One remarks that

βj` =

{
χ((α2 −α1)N) if j = `,

χ(k′α1
)χ(−k′α2

) if j 6= `,
(107)

so that

IE[Gα1
(k′)G∗α2

(k′)] =
1

n2d

(∑
d

e−i
2π
rN (α1−α2)dN

)

×

 nd∑
j,`=1

βj` −
nd∑
j,`=1

χ(k′α1
)χ(−k′α2

)

 (108)

Then using (107) and little algebra one gets

nd∑
j,`=1

βj` −
nd∑
j,`=1

χ(k′α1
)χ(−k′α2

)

= nd
[
χ((α2 −α1)N)− χ(k′α1

)χ(−k′α2
)
]

(109)

As a consequence one finally gets:

IE[Gα1
(k′)G∗α2

(k′)]

= δα1α2

r2

nd

[
χ((α2 −α1)N)− χ(k′α1

)χ(−k′α2
)
]

= δα1α2

r2

nd

(
1− |χ(k′α1

)|2
)

(110)

so that the Gαi , αi 6= γ, are uncorrelated. QED.
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