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ABSTRACT

We address the statistical modeling of solar images provided by the Extreme ultraviolet Imaging Telescope (EIT)
onboard the Solar and Heliospheric Observatory (SoHO, a joint ESA/NASA mission). We focus in particular
on the less structured regions, the “Quiet Sun”. We first review on a brief historical viewpoint on multifractal
processes for physical modeling. Then we present a multifractal analysis of Quiet Sun images. Our aim is to
identify a model that would permit to simulate images that are similar to real ones, and to use the scale invariance
property to obtain artificial images at any finer resolution. We compare various families of models including
infinitely divisible cascades and fractional stable fields that permit to synthesize images that are statistically
similar to Quiet Sun images. This modeling will assist in promoting forthcoming high resolution observations
by analysing sub-pixel variability in today’s solar corona images.
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1. INTRODUCTION

The complex dynamics of the Sun obeys an approximately 11 years periodic cycle. During the most active
phases, one observes very large magnetic structures with their specific geometry and dynamics. Such organized
structures are called ‘active regions’, see figure 1(a). They are the subject of detailed studies.1,2 During more
quiet periods, such ‘active regions’ are less numerous ; in the bandwidth centered on λ = 19.5 nm, one observes
large regions which are much less organized, in appearance at least. These so-called ’Quiet Sun’ areas3,4 look
like some turbulent background, see figure 1(b), but their precise nature is still elusive. Despite its sounding
peaceful, this name certainly hides a much more lively small scale reality. Small scales remain out of reach due
to a lack of resolution of present instruments.

The Extreme ultraviolet Imaging Telescope (EIT)5 onboard the SoHO (Solar and Heliospheric Observatory)
mission jointly launched by the European Space Agency (ESA) and the National AeroSpace Agency (NASA)
provides images of the Sun in the extreme ultraviolet bandwidth, at the wavelength λ = 19.5 nm in particular.
The resolution is about (1800km)2/pixel. This is rather rough compared to the smallest physical scales which are
supposed to be as small as . 100 m. Therefore the quality of observations is limited and we do not know really
how far they are limited. We suggest to take benefit from the scale invariance property observed on these images
to extrapolate the sub-pixel structure, at least in a statistical sense. Indeed, our aim is not to extract sub-pixel
information as superresolution would. Our aim is to propose a statistical model of what sub-pixel information
may be, given ‘badly resolved’ current observations.

We expect that sub-pixel extrapolation based on scale invariance provide us with a model for Quiet Sun
images at any resolution. This model should feature some statistical properties of images that are currently
available. The idea is to consider these images as (disordered) stochastic textures. Even though we do not
pretend that such a model will precisely take into account the whole physics of the system, it will not consist
of a simple ‘texture modeling’. Indeed, our approach relies on the use of stochastic multifractals models, the
definition of which was initially motivated by the modeling of turbulent flows.6,7 From a more general viewpoint,
such an approach may be interesting when observing a disordered turbulent system with a resolution much bigger
than the sallest physical scale (e.g., clouds in meteorology, star dusts in astrophysics).
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(a) (b)
Figure 1. Examples of images from EIT at wavelength λ = 19.5 nm (a) with an active region, (b) without any active
region, the Quiet Sun.

An essential motivation of this work is the anticipation of the quality of future highly resolved observations.8

Physicists are studying the opportunity to reach resolutions of the order of (80 km)2/pixel, in place of the
current (1800 km)2 of EIT. The scientific interest of such expensive missions has to be argued. The CCD sensors
used in Solar Physics are essentially photon-counting instruments. The arrival of photon can be modelled by
a Poisson process. Among others, the problem of high resolution observations is the decrease in the signal to
noise ratio as the resolution becomes finer. When the average number of incident photons becomes too small,
the measurement is no more reliable. As a consequence, it is difficult to predict whether one may hope to gain
some reliable detailed information by using a better resolution since we do not know a priori how the intensity is
really distributed inside a presently ‘badly resolved’ pixel. The main thrust of this work is that we may propose
an extrapolation (in the statistical sense) of the structure of images below the available pixel scale thanks to
the use of scale invariant models. Eventually, we may be able to define a criterion to define regions where a
high resolution might be relevant: regions with sufficiently high signal to noise ratio and probable presence of
sub-pixel details.

The images synthesized by using our model will also permit to calibrate some tools such as Velociraptor9

that was designed to extract the movements at the surface of the Sun thanks to an optical flow technique. For
instance, we will be able to test the limits of such a tool when aiming at the extraction of movements much
smaller than 1 pixel between to successive images∗.

The paper is organized as follows. Section 2 recalls on the roots of multifractal analysis and multiplicative
cascades for the modeling of physical systems. Section 3 recalls how wavelet are being used in the multifractal
analysis of images. Section 4 presents our method to identify the parameters of stochastic multifractal models
that capture a set of statistical properties of Quiet Sun images. Finally we discuss the validity and potential
utility of our approach.

2. A BRIEF HISTORY OF MULTIFRACTAL MODELS FOR PHYSICS

2.1 From turbulence to stochastic models

The purpose of this section is to place this work in the continuity of a story which began around 1922 when
Lewis Fry Richardson10 described a turbulent flow as a cascade of vortices of all possible scales. Richardson
summarized this description by a famous poem, see figure 2(a). This poem describes the energy transfer from
the large scale (e.g., the size of a tea spoon when stirring tea) where energy is injected to the smallest scale where
the energy is dissipated by viscosity in the form of heat: big whirls break down to smaller whirls, see figure 2(b).

∗Work in progress in collaboration with S. Gissot, Royal Observatory of Belgium



Big whirls have little whirls,

Which feed on their velocity;

And little whorls have lesser whirls,

And so on to viscosity.
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(a) (b) (c)
Figure 2. (a) Poem by L.F. Richardson (1922); (b) corresponding phenomenological picture; (c) construction of a binomial
multiplicative cascade.

Why a physicist became so lyrical ? Certainly due to his difficulty in understanding and modeling turbulent
flows: even today there is still no complete theoretical model of turbulent flows...

In fluid mechanics, the rate of turbulence of a flow is quantified by the Reynolds number Re.6 This number Re
is the ratio between the non-linear term and the viscosity term of the Navier-Stokes equations that govern the fluid
dynamics. As Re increases, more and more instabilities appear and the flow becomes more and more disordered.
For Re � 1, the number of degrees of freedom is proportional to Re9/4 (e.g., Re ∼ 1010 ⇒ Re9/4 ∼ 1023). For
such highly turbulent flows, the Navier-Stokes equations are difficult to solve analytically (because of serious
mathematical difficulty†) as well as numerically (because of too high numerical cost).

An alternative approach is to consider a turbulent flow as a disordered system to be modeled directly from
experiment and data analysis. Such a model must of course obey known theoretical properties of turbulent
flows as well. This approach is mainly based on the observation that although the detailed properties of a
signal measured in a turbulent flow appear to be unpredictable, its statistical properties are reproducible. This
observation motivated the search for a probabilistic description of turbulence as soon as in the 1930s.11

2.2 Intermittency, multiplicative cascades and multifractals

In 1941, the famous probabilist A.N. Kolmogorov12 proposed what is now referred to as the K41 theory. In
summary, this theory consists of additional hypotheses to Navier-Stokes equations. We will focus on two of these
hypotheses only. The first assumption is that all the possible symmetries of Navier-Stokes equations, usually
broken by the mechanisms producing the turbulent flow, are restored in a statistical sense at small scales and away
from boundaries in the limit of infinite Reylnolds number: in particular, homogeneity and isotropy are restored.
The second assumption is that the flow is self-similar at small scales, i.e. it possesses a unique scaling exponent H
for velocity differences δv(r, λ`) law= λHδv(r, `). The velocity increments δv(r, λ`) = v(r+`)−v(r) must moreover
obey the exact four-fifths law, derived from the exact Kármán-Howarth13(1938) relation, δv(r, `) = −4/5ε` where
ε is the dissipation rate. Thus K41 theory predicts that H = 1/3. As a result, one may say that the K41 theory
reminds to model the velocity field of a turbulent flow by a fractional Brownian motion with Hurst exponent
H = 1/3. This model is described by a unique Hölder singularity exponent (see section 3.1) so that it is called
monofractal. At this point it is interesting to note that Kolmogorov had just published in 1940 the article14

which originated the later work by Mandelbrot & van Ness15(1968) who defined the fractional Brownian motion
(fBm) BH as presently used. Recall that the fBm BH(x) is the only self-similar Gaussian process with stationary
increments. Its (generalized) Fourier spectrum is ∝ 1/k1+2H ; for H = 1/3, one recovers the 1/k5/3 spectrum
usually observed in turbulence.

Meanwhile, in the 1940s, several works were devoted to the statistical description of fragmentation processes
(e.g. Landau,16 Ambarzumian17) which share some similarity with the energy cascade from large to small scales:
the phenomenology of Richardson’s cascade evokes the fragmentation process of big whirls in smaller whirls.

†The Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Millenium Prize Problems:
one of these problems is to make substantial progress toward a mathematical theory which will unlock the secrets hidden
in the Navier-Stokes equations.
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Figure 3. (a) Example of a turbulent energy dissipation rate ε(t) in a turbulent flow. (b) Example of a measurement of
one component vx(t) of a turbulent velocity field.

Landau precisely made an objection to K41 theory by pointing out that it assumes the energy dissipation rate
to be constant and uniform, although this assumption is not physical: the dissipation rate has to fluctuate in
time and space. Landau made this objection in a footnote of the original edition of his book18 published with
Lifshitz in 1944. In brief, it means that the energy transfer is random and cannot be considered as uniform and
constant, see figure 3(a). This is the origin of the so-called intermittency phenomenon.

In 1962, Kolmogorov19 (again !) and Obukhov20 brought an enlighting answer to the problems raised by
Landau. To this aim they introduced a log-normal dissipation rate ε` at scale ` such that var [log ε`] = A +
µ log(`o/`). This was the first model that took the intermittency phenomenon into account. It was also suggesting
to build intermittency models based on the dissipation, see figure 3(a). This is the origin of the first multiplicative
cascades introduced by the Russian school, e.g. Novikov,21 Yaglom,22. . . and later studied in finer details by
Mandelbrot,23 see figure 2(c). Mandelbrot remarked that the intermittency of multiplicative cascades could be
described thanks to the notion of fractal dimension: in the limit of an infinite cascading process, the dissipation
concentrates on fractal sets. Kahane & Peyrière24 (1976) proved the mathematical theorems based on the theory
of martingales supporting Mandelbrot’s conjectures. These objects are described by a set of Hölder singularity
exponents: they are multifractal.

2.3 From binomial to infinitely divisible cascades

The 1980s were rich in new results as far as multiresolution, multifractal, and intermittency notions are con-
cerned. Wavelets25 were ”officially” born in 1984 , and pretty much at the same time multifractal analysis26,27

was elaborated and the first accurate experimental observations of intermittency28 were performed thanks to
higher order statistics measurements. Therefore, the wavelet based multifractal analysis of the intermittency
phenomenon in turbulent flows could be elaborated and developed,29 in particular thanks to improved computer
facilities for storage and analysis of huge amounts of data.30–32 Section 3 recalls on wavelet based multifractal
analysis.

In parallel with much data analysis about turbulent flows,6 some people have also been searching for mul-
tifractal stochastic processes relevant for modeling. Multiplicative cascades are at the heart of this research.
For instance, Schertzer & Lovejoy33(1987) introduced what they called ”universal multifractals” build from
multiplicative cascades using stable distributions to model rain and clouds. Arneodo et al.34(1998) introduced
multiplicative cascades on wavelet coefficients as an attempt to model signals such as the velocity signal in fig-
ure 3(b). We also want to mention the interesting purely mathematical work by Le Jan & Sznitman35 (1997) who
proposed a solution in the weak sense to Navier-Sokes equations thanks to a construction using a multiplicative
cascade.



Since 2000, various authors36–42 have proposed a set of generalized versions of the Mandelbrot’s discrete
multiplicative cascades. These new constructions are called infinitely divisible cascades (IDC) because they
rely on the use of infinitely divisible distributions. Section 4.5.1 recalls on the sub-family of compound Poisson
cascades. From a mathematical point of view, these processes are defined as martingales that converge to the
density of a multifractal (positive) measure. The main evolution compared to Mandelbrot binomial cascades
is that such processes are truly stationary in time and share a true self-similarity with no special scale ratio
(discrete cascades rely on some discrete underlying tree, e.g., the dyadix tree). Definitions have been extended
to dimension D ≥ 1,7,43 see figure 6(b) for an example in dimension D = 2. It was recently shown that IDC
were good candidates for the modeling of natural images.44 IDC therefore constitue a versatile framework for
the modeling of measure-like physical quantities, e.g., turbulent dissipation, intensity of images... The fractional
Brownian motion in multifractal time45 then permits to model scalar quantities in one dimension with symmetric
fluctuations such as one component of a turbulent velocity field as a function of one coordinate (e.g., vx(x), see
figure 3(b)). The next step will be the definition of multifractal vectorial fields aiming at the modeling of a
turbulent velocity field v(x, t).

The present work is the first attempt to model images of a turbulence like physical system, the quiet corona,
by means of multifractal processes.

3. WAVELET MULTIFRACTAL ANALYSIS

3.1 Principle

Multifractal analysis aims at the characterization of the regularity of measures, functions or graphs of realizations
of a stochastic process.29 In the present context, the purpose is to quantify the presence of singularities in an
image thanks to the multifractal spectrum D(h), where h is the so-called Hölder exponent that characterizes a
singularity. In brief, f(x) is said to be locally Hölder regular with exponent h(xo) at xo if h(xo) is the highest
exponent such that there exist a polynomial P (x) and a constant C with |f(x)− Pxo(x− xo)| ≤ C|x− xo|h for
x in a neighborhood of xo. In nice cases, the polynomial Pxo

(x − xo) is simply the Taylor polynomial of f(x)
at xo. In the simplest case, Pxo

(x− xo) = f(xo) and the singularity is described by |f(x)− f(xo)| ∼ |x− xo|h.
The multifractal spectrum D(h) is defined as the fractal dimension of the set {xo|h(xo) = h}. It can be defined
for a measure or for a function.

Wavelets gather several interesting properties as a tool for multifractal analysis.29,46,47 As a multiscale
microscope, they precisely explore the local singular behavior of a function. If the function f has a singular
behavior of exponent h in xo, then the wavelet coefficients Tf (xo, a) located in xo at scale a are such that48

|Tf (xo, a)| ∼ ah as a → 0. This is indeed the case provided the wavelet has enough null moments to remain
unresponsive to the local polynomial component Pxo(x − xo) of f . First order increments f(xo + au) − f(xo)
would see the polynomial behavior only. In contrast, the regularity of a function may be precisely characterized
thanks to wavelets even though a smooth polynomial behavior is superimposed to the singular part. Moreover, in
its original formulation, the multifractal formalism applied to singular measures only. Wavelets have permitted
the extension of the multifractal formalism to other objects like multifractal distributions.

In practice, the estimation of the local regularity of a multifractal function at every position x is numerically
unstable. Therefore, an alternative approach is used which is based on the scaling behavior of global quantities
called partition functions. In this approach, multifractal processes and multifractal images in particular are seen
as a ‘gas of singularities’. Multifractal analysis is then connected to some thermodynamical interpretation. In
this view, the multifractal formalism is established when one can associate the multifractal spectrum D(h) to its
Legendre transform ζ(q). Then q plays the role of the inverse of a temperature, D(h) is the entropy and ζ(q) is
associated to the free energy. We will focus on this last function ζ(q) in particular. Indeed, the function ζ(q) is
a set of multiscaling exponents of a partition function S(q, a) ∼ aζ(q) usually built upon wavelet based averaged
quantities (see next section). The exponents ζ(q) reflect the multiresolution statistics of a process.49,50 For a
stochastic multifractal process, they describe its higher order correlation structure. More precisely they contain
information on the way the distributions of wavelet coefficients change from larger to smaller scales. This is the
reason why we rather talk of ‘multiscaling’.44,50 The set of exponents ζ(q) will be used as a set of parameters of
the models described in section 4.



3.2 Wavelet based estimates of the scaling exponents ζ(q)
Various methods based on wavelets are available to estimate the multiscaling exponents ζ(q). The Wavelet
Transform Modulus Maxima (WTMM) method32 is a priori very accurate for ideal multifractals but is quite
delicate to carry out. Moreover, it needs large images to be accurate. This method consists of 4 steps:

1. Compute the 2D continuous wavelet transform of the image using derivatives of the Gaussian;

2. Extract chains of local wavelet modulus maxima;

3. Compute structure functions based on wavelet modulus maxima:

Z(q, a) =
∑

L∈L(a)

(
sup

(x,a′)∈L,a′≤a
Mψ[f ](x, a′)

)q
(1)

where ψ is the wavelet, L(a) denotes the set of maxima lines below scale a, L is a maxima line, and Mψ[f ]
is a local maxima of the modulus of the wavelet transform of function f .

4. Estimate scaling exponents of these structure functions:

Z(q, a) ∼ aζ(q), a→ 0. (2)

When the power law scaling is obeyed over a sufficiently large range of scales, this method is very efficient. How-
ever, when applied to small images, it suffers from some sensitivity due to the step of the numerical determination
of the maxima along maxima lines.

Recently another method was proposed that relies on similar ideas but applied to a discrete wavelet transform:
Wavelet Leaders.51,52 In this approach the supremum over maxima lines below scale a around x is replaced by the
maximum over coefficients at octaves below j and within distance less than ±2j of a given location k. Indexing
for the 2D dyadic subsets λ ≡ λ(i)(j, k), i = 1, 2 or 3 correponding to the 3 possible orientations (horizontal,
diagonal, vertical), j, k ∈ Z, the 2D wavelet ψλ is essentially located around the subset λ. Let 3λ denote the
subset λ and its adjacent dyadic subsets (at the same octave j). The wavelet leaders are defined as

Lλ = sup
λ′⊂3λ

|dλ′ | (3)

where dλ′ is the wavelet coefficient associated to the dyadic subset indexed by λ′. The modulus maxima are
no longer taken over maxima lines as in the WTMM method but over sub-branches of the dyadic tree. The
partition function becomes

SWL(q, j) =
1
Nj

Nj∑
k=1

Lqλ(j,k) ∼ 2jζ(q) (4)

The more simple discrete wavelet transform (DWT) structure functions SDWT (q, j) are simply computed
from the wavelet coefficients modulus, without taking any supremum:

SDWT (q, j) =
1
Nj

Nj∑
k=1

|d(j, k)|q ∼ 2jζ(q) (5)

where Nj is the number of wavelet coefficients d(j, k) at octave j. This method is fast and efficient for positive
values of q but becomes numerically unstable for q < 0 since the most probable value of the d(j, k) is zero.

Working with modulus maxima (WTMM or Wavelet Leaders) is theoretically the best approach that moreover
gives the most stable numerical results. In particular, these methods permit to estimate scaling exponents ζ(q) for
negative orders q. However, alike the WTMM method, the wavelet leaders method calls for a large scaling range51

which is not available in 256× 256 images (only 8 octaves). Moreover, due to the use of a supremum over small
scales, estimates remain sensitive to a possible cut-off of the scaling behavior at small scales. As a consequence,
we have preferred to work with the more simple discrete wavelet based structure functions SDWT (q, j) so that
the models proposed below will be fitted to experimental data on the basis of the ζ(q) for q ≥ 0 only.
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Figure 4. (a) Orientation averaged power spectrum for a given spatial frequency norm |k| from EIT 19.5 nm Quiet Sun
images of 1997.(b) Normalized histograms of 2D discrete wavelet coefficients computed from 54 Quiet Sun images taken
by EIT at 19.5 nm during the year 1997. (c) Histogram of intensities estimated from the 54 images.

4. STOCHASTIC MODELS FOR EUV QUIET SUN IMAGES

4.1 Toward multifractal models

We have selected a set of 54 images acquired at the wavelength 19.5 nm of EIT in 1997 dduring a period of
minimal solar activity. We excluded images that clearly showed active regions, see figure 1(a), to keep only
images featuring the quiet corona, see figure 1(b). Beyond classical analyses (histrograms, spectrum...) already
studied in depth in the literature, these images exhibit a scale invariant property.3,53 This can be illustrated
for instance by the orientation averaged Fourier spectrum of Quiet Sun images, see figure 4(a). Moreover, the
evolution of the distributions of wavelet coefficients through the scales is characteristic of a multifractal process,
see figure 4(b). Multifractal analysis will permit to describe accurately the spatial correlation structure of these
images. As a result, we identify two families of stochastic processes that reproduce a statistical behavior similar
to Quiet sun images as well as a comparable visual aspect. Recall that we do not talk about direct and exact
numerical simulations of the magneto-hydrodynamic flows in the Sun; we ‘only’ propose a statistical modeling
of Quiet Sun images with appropriate stochastic models.

4.2 Experimental data

The images provided by EIT are of size 1024× 1024 and represent the whole Sun, see figure 1. In order to limit
the distortions due to the curvature of the Sun to about 15%, we have kept a 256× 256 zone around the center
of the apparent solar disk only. To avoid side effects, wavelet transforms have been computed on 512 × 512
images. To eliminate images that contained active regions, we have kept 512 × 512 images of which intensities
I are such that P (I > U) < 10−4. The threshold U was determined by computing the quantile U such that
P (I > U) = 10% for an image that contains an active region. This procedure yields a set of 54 images of size
512 × 512 without any strong active region in them and without any cosmic ray (usually seen as an isolated
very brilliant point). The multifractal analysis is performed over the 512 × 512 images to avoid side effects in
the wavelet transform but only coefficients associated to the central 256× 256 square are taken into account, see
figure 1(a).

4.3 Multifractal analysis of Quiet Sun images

Figure 5(a) shows the scaling behaviors of some structure functions estimated from the 54 Quiet Sun images. A
linear behavior of log2 SDWT (q, j) as a function of j = log2 a is observed for 2 ≤ j ≤ 5. The exponents ζ(q) are
estimated thanks to a linear regression is this scaling range.

Figure 5(b) shows the set of the resulting ζ(q) estimates for −1 ≤ q ≤ 5. Note that errorbars are computed
as the empirical standard deviation of the set of 54 estimates. As remarked above, estimates for negative values
of q are numerically unstable; this yields a large variability that results in wide errorbars. Estimates for q larger
than 5 would not be reliable due to the set of data that is too small to guarantee sufficient statistics at higher
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Figure 5. (a) Structure function (q = 0.33, 1, 2) estimated from DWT of Quiet Sun images in 1997. (b) Exponents ζ(q)
obtained from the DWT structure functions (c) Exponents τ(q) deduced from ζ(q) by τ(q) = ζ(q)− qζ(1).

orders. Errorbars are already quite important around q = 3, but it is also well known that our estimates might
be biased when sample size is too small.

Figure 5(c) shows the exponents τ(q) = ζ(q) − qζ(1) of the measure underlying the images. A possible
approach to model these images rely on the use of an integrated version of the density of some underlying
multifractal measure described by a set of multifractal exponents τ(q) such that τ(0) = τ(1) = 0. Applying
a 1/‖k‖H filter modifies the multifractal exponents so that given τ(q) one gets a measure with multifractal
exponents

ζ(q) = qH + τ(q). (6)

This is connected to the fact that the differentiation of a Hölder singularity of exponent h becomes a singularity
of exponent h − 1 while its integration yields a singularity of exponent h + 1.54 It is then natural to consider
the modeling of Quiet Sun images as a 1/‖k‖H filtered version of a multifractal density. An interesting remark
is that τ(1) = 0 by definition so that ζ(1) = H. This latter property will be useful to identify the parameters
of the proposed models. The Fourier spectrum of a 2D multifractal density44 is ∼ 1/k2+τ(2) where τ(2) < 0 so
that 2 + τ(2) < 2. The spectrum of the resulting model will be ∼ 1/k2+τ(2)+2H which is consistent with the
spectrum of Quiet Sun images that behaves as ∼ 1/k2.9.

4.4 Monofractal or multifractal ?

A basic modeling of Quiet Sun images would have taken into account the histogram of intensities and the Fourier
spectrum. The exponential of a 2D fractional Brownian sheet (fBs)55 BH appears as a good candidate to this
purpose; H is called the Hurst exponent. The fBs can be approximately simulated in a very simple manner
by applying a 1/‖k‖H filter to a 2D Gaussian noise in the Fourier domain. The resulting process is Gaussian
and exhibits a 1/k2+2H isotropic spectrum which is characteristic of scale invariance. Since the histogram of
intensities in Quiet Sun images is concentrated on positive values and similar to a log-normal distribution, we
may consider the exponential of the former 2D fBs. It has been usually observed when studying the statistics
of natural images44,56 that the power law behavior of the spectrum of a scale invariant process remains nearly
unaffected by the exponentiation despite its non linear character. As a consequence, this model will exhibit
both a 1/k2+2H spectrum and a lognormal distribution of intensities. Estimates of the ζ(q) for the Quiet Sun
prescribe H = 0.55 ± 0.06. One may be satisfied at first sight but this model is essentially monofractal. It has
trivial multifractal exponents ζ(q) = qH, that is τ(q) = 0 in (6), in contrast with the observed ζ(q) which clearly
exhibit a non linear behavior corresponding to a true multifractal behavior, see figure 5(b-c).

At this stage we still have to discriminate between two possibilities at least. As mentionned above, the
first possibility is to use a 1/‖k‖H filtered version of the density of a multifractal measure described by a set of
multifractal exponents τ(q) which yields a process with multiscaling exponents ζ(q) = qH+τ(q). Several authors
have introduced interesting definitions of such multifractal measures in 1 dimension.36–42 These definitions have
been recently extended7,43,44 to dimension D ≥ 2 for image modeling purpose in particular. All these definitions
are connected to the family of infinitely divisible cascades, a general framework for the multiplicative cascades



originally introduced for the modeling of the dissipation field in turbulent fluid flows.22,23 Section 4.5 proposes
a model according to this approach.

A second approach which is much less natural and intuitive but may be relevant as well cannot be completely
discarded a priori. This is the special case where the multifractal behavior roots in the divergence of moments for
orders q higher than some critical value. Linear fractional stable motions (in 1D) or sheets (in 2D) 57 precisely
exhibit such a special behavior.58 Thus the ζ(q) of these processes are non linear due to a phase transition at
some critical order q = α: in this case ζ(q) is a piecewise linear function. Section 4.6 deals with this second
approach to study its potential relevance.

4.5 A model based on compound Poisson cascades
4.5.1 Compound Poisson cascades

Compound Poisson cascades are a subset of the family of infinitely divisible cascades. They were originally
introduced37 as a multifractal product of cylindrical pulses. This definition can be reformulated as a multiplicative
cascade40 and extended7 to dimension D ≥ 2. The density Q`(x) resulting from a compound Poisson cascade is
defined by

Q`(x) =
∏
iW

f(
x−xi

ri
)

i

IE
[∏

iW
f(

x−xi
ri

)

i

] (7)

where ` > 0 is some small limiting scale (a kind of resolution); the Wi are independent identically distributed
(i.i.d.) non negative random variables; (xi, ri) is a Poisson point process in R2 × [`, 1] with density dm(x, r) =
(4/πr3)dxdr; f(x) = I1[−1/2,1/2](x) in the basic definition can be replaced by some compact supported non
negative function‡ The integration kernel f plays the role of some geometrical object in the image. It may also
be useful to attenuate small scales discontinuities or to take into account some geometrical features of the images
under study.

In the limit ` → 0, compound Poisson cascades are the density of a scale invariant multifractal measure
characterized by a set of multiscaling exponents τ(q) = q(IEWi − 1) + 1− IEW q (at least within a certain range
of q, see below). The design of some τ(q) function to the purpose of modeling reduces to the choice of the
distribution of the multipliers Wi.

An interesting property of the process Q`(x) is that it can be interpreted as the intensity I(x) resulting from
the scattering of a uniform light by a random superposition of transparent cylinders of sizes {ri} placed above
positions {xi} and with i.i.d. random transparency Wi. The centers xi of the cylinders are uniformly distributed
on the plane; the radii ri are distributed by a scale invariant 1/r3 law; the distribution of the transparencies Wi

is determined by the choice of the function τ(q) which is directly associated to their second generating function.
The intensity of one pixel is therefore the product of the transparencies of the cylinders: this is a multiplicative
cascade. This presentation points to the resemblance between CPC and other classical approaches in image
modeling where elementary objects of random sizes are distributed in space following a Poisson point process.56

See7,44 for more details.

4.5.2 Identification of parameters H and τ(q)

The identification proceeds in 2 steps : first identifying H, and second evaluating τ(q) in equation (6). The
parameter H describes the linear trends of ζ(q). The function τ(q) is a non linear concave function obeying
τ(0) = τ(1) = 0 and controls the multifractal behavior of the final process. As a consequence, one has H = ζ(1)
so that we will use for H the estimate of ζ(1) obtained from the multifractal analysis performed in section 4.3.
Then τ(q) is estimated as τ(q) = ζ(q)− qζ(1). We get H = 0.55± 0.06.

We have studied the adequation of several compound Poisson cascade models to experimental data. The best
fit seems to be obtained with a model such that Wi = ((1 + T )1/Tu)T where u is uniformly distributed in [0, 1].
Then one has:

τCPC(q) = 1− (1 + T )q

(1 + qT )
(for q ≤ q∗+) (8)

‡This may rejoin the random wavelet expansions evoked in Mumford & Gidas59(2001).



with T = 0.85 (see7,44 for a detailed presentation of available models). This theoretical expression is actually
fine for q ≤ q∗+ in estimates based on the DWT structure functions SDWT (q, j). The existence of an upper bound
q∗+ is due to the linearization effect.60 In dimension 2, q∗+ is the value of q such that ζ(q) = 2− qζ ′(q). Therefore,
one expects estimates of ζ(q) that behave as

ζCPC(q) =

 qH + 1− (1 + T )q

(1 + qT )
for q ≤ q∗+,

2− qζ ′(q∗+) for q ≥ q∗+,
(9)

where q∗+ ' 2.25 for T = 0.85. The estimates on figure 5(b) (black circles) are quite consistent with this
theoretical prediction.

In practice the 1/‖k‖H filtering is carried out in the Fourier space thanks to a fast Fourier transform and by
using a 1/‖k‖H frequential response that is truncated near the origin k = 0 since it is not defined at this point.
We have chosen to impose a saturation at the value associated to the smallest available discretized frequency.

Once we have identified the parameters of this model we can numerically synthesize as many realizations as
needed, at any desired resolution. To test the validity of this model, we compare the exponents ζ(q) and τ(q)
estimated on 54 independent realizations of 512×512 model images to the exponents estimated in section 4.3,
figure 5(b-c) on the 54 Quiet Sun images. Figure 5 shows that estimates on the images from the CPC model are
nearly superimposed onto estimates from Quiet Sun images.

It is remarkable that the visual aspect of model images is quite similar to the visual aspect of Quiet Sun
images, figure 6(b), except some geometrical structures which we did not aimed at featuring at this stage.
We emphasize that only quantitative statistical parameters have been fitted to the results of the multifractal
analysis and that no post-processing has been used. This approach is very systematic and theoretical, with no
computer graphics artifacts. As a conclusion, this model seems to be quite relevant for EUV Quiet Sun images
for λ = 19.5 nm. We recall moreover that such models receive some interesting physical interpretation, see
previous section.

Remark: Figure 5 represents both the ζ(q) exponents and the τ(q) exponents (where the linear trend of the
ζ(q) has been removed) to make comparisons more discriminating. Errorbars reflect the empirical standard
deviation of the set of 54 estimates. They are not computed as an estimate of the variance of the estimator for
one single image.

4.6 A model based on linear fractional stable sheets

4.6.1 Definition

In dimension D, the linear fractional stable sheet57,61 (LFSS) of parameters α ∈ (0, 2] and H ∈ (H1, ...,HD) ∈
(0, 1]D is the real valued symmetrical α-stable (SαS) process Lα = {Lα(x), x ∈ RD} defined as

Lα(x) =
∫

RD

D∏
i=1

[
(xl − sl)

Hl−1/α
+ − (−sl)Hl−1/α

+

]
dZα(s), (10)

where {Zα(s), s ∈ RD} is the symmetrical α-stable Lévy sheet and x+ = max(x, 0). The case α = 2 corresponds
to the Gaussian case. Observe that, for every l = 1, ..., D, Lα is a Linear Fractional Stable Motion (LFSM)
in R of Hurst parameter Hl along the direction of the lth axis. The choice Hl = H, ∀l, ensures isotropy.
The multifractal spectrum of LFSS is known to be very particular58,61,62 since the multifractal properties of
these processes are due to their high variability betrayed by the divergence of moments of order greater than α.
The scaling exponents ζα,H(q) of an isotropic LFSS with parameter α and Hurst parameter H are given in D
dimensions by:58,61,62

ζα,H(q) =


(H +D)q +D for q ≤ −1,

Hq for −1 ≤ q ≤ α,
(H −D/α) q +D for α ≤ q,

(11)



(a) (b)

(c) (d)
Figure 6. Examples of 512×512 images of (a) Quiet Sun, (b) a fractionnally integrated compound Poisson cascade, (c) a
linear fractional stable sheet (LFSS), (d) the exponential of a fractional Brownian sheet (H = 0.55).

which is a piecewise affine function. Lévy processes obey H = 1/α. Even though LFSS have no link with any
underlying multiplicative cascades one can compute the corresponding τ(q) as for compound Poisson cascades
as τα(q) = ζα,H(q)− qH which yields

τα(q) =

 Dq +D for q ≤ −1,
0 for −1 ≤ q ≤ α,

−(D/α)q +D for α ≤ q.
(12)

A remarkable feature of τα(q) is that it is flat equal to zero for −1 ≤ q ≤ α which is never the case for any known
multiplicative cascade. Let us remark that in dimension 2, the last linear function −(2/α)q + 2 is always below
−q + 2 since 0 < α ≤ 2. Last, note that since we aim at modeling a positive quantity (light intensity) we used
dissymetrical (β = 1) α-stable distributions in place of the usual symmetrical (β = 0) ones.

4.6.2 Identification of parameters H and α

Let us remark that the estimated exponents τ(q) are quite close to zero for −1 . q . 1.9. Moreover, they obey
a quasi linear behavior for q ≤ −1 and q ≥ 1.9 both pointing to 2 at q = 0. This behavior is very similar to the
multiscaling properties of the LFSS defined in previous section, see (12). Let us consider the adequation of some
LFSS model to quiet Sun images.

Various wavelet based techniques63 can be considered to estimate both H and α. Here the Hurst parameter
H is estimated as H = ζ(1). Then α can be estimated in several ways. We have chosen to estimate α by



best-fitting the function τα(q) in (12) to the τ(q) estimated from Quiet Sun images. The estimated parameters
that best fit the data are α = 1.9 and H = 0.55.

To validate this estimation, we compare the estimates from 54 independent realizations of LFSS similar to
the Quiet Sun images. Simulations have been carried out by using an approximate Fourier method recently
introduced by Scheffler & Biermé.64 In brief, the numerical methods consists of 2 steps: generating an α-stable
Lévy image (i.i.d. random intensities) and Fourier filtering by 1/‖k‖2+H−2/α. Figure 5 shows the ζα,H(q)
and τα(q) estimated from the LFSS model (triangles) compared to the ones estimated from Quiet Sun images
(squares). The estimated ζα,H(q) are within the errorbars of estimates on Quiet Sun images. This LFSS model
might be relevant. although we get a less satisfying visual aspect compared to the previous compound Poisson
cascade model (still no graphical post-processing has been made), see figure 6(c). The physical interpretation is
much more delicate than that of compound Poisson cascades.

5. CONCLUSION

We have proposed a systematic approach to the statistical modeling of EUV Quiet Sun images from EIT onboard
the SoHO mission (ESA/NASA). The purpose of this modeling is to be able to propose an extrapolation of
what kind of images one should expect at resolutions much finer than what is actually available with present
instruments. The main thrust of this work was to use the scale invariance property of quiet corona images.

Therefore, we have first performed a wavelet based multifractal analysis of 54 Quiet Sun images at λ =
19.5 nm. Due to the small size of images (512x512), we have used Discrete Wavelet Transform partition functions
rather than other more sophisticated tools like WTMM or Wavelet Leaders. As a result we get a set of multiscaling
exponents ζ(q) and τ(q) that we further use as parameters to design stochastic processes similar to Quiet Sun
images.

We have considered three families of models. The first model, the exponential of a fractional Brownian sheet,
is a self-similar process built to simply reproduce the Fourier spectrum and the close to lognormal distribution
of quiet Sun images. It would correspond to a monofractal behavior. The multifractal analysis unambiguously
reveals the multifractal nature of Quiet Sun images. As a consequence we turned to multifractal models. The
family of fractionnally integrated compound Poisson cascades belongs to the family of the more general infinitely
divisible cascades. The parameters ζCPC(q) can be nearly superimposed to those of Quiet Sun images. The
visual aspect is moreover quite satisfactory, even though some geometrical features have not been taken into
account. The third family of models is that of Linear Fractional Stable Sheets. Even though the parameters
ζα,H(q) are within errorbars of estimates from the quiet Sun images, they seem to fit the data in a worse manner
and display a less satisfactory visual aspect.

If the α-stable was the best one, an important consequence would be that the images may have infinite
variance. This should then be taken into account with care in usual image processing which usually assume a
finite variance. However, even though we cannot definitely discriminate between the two multifractal models we
have proposed here, it seems that the model based on compound Poisson cascades better fits our observations.
At the moment, the accuracy of our numerical estimates is limited by the number of available data.

This study gives clear evidence that Quiet Sun images are highly intermittent and can be reasonably modeled
by multifractal stochastic processes. This modeling will allow us to simulate images at any resolution by assuming
the scale invariance property. Thus, we will be able to study the evolution of quantities such as the local signal
to noise ratio and the local contrast as the resolution gets finer. This will help to prepare and calibrate future
missions aiming at high and very high resolution imaging of the Sun.
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