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Multifractal Random Walks as
Fractional Wiener Integrals

Patrice Abry, Senior Member, IEEE, Pierre Chainais, Member, IEEE, Laure Coutin, and Vladas Pipiras

Abstract—Multifractal random walks are defined as integrals of
infinitely divisible stationary multifractal cascades with respect to
fractional Brownian motion. Their key properties are studied, such
as finiteness of moments and scaling, with respect to the chosen
values of the self-similarity and infinite divisibility parameters. The
range of these parameters is larger than that considered previ-
ously in the literature, and the cases of both exact and nonexact
scale invariance are considered. Special attention is paid to various
types of definitions of multifractal random walks. The resulting
random walks are of interest in modeling multifractal processes
whose marginals exhibit stationarity and symmetry.

Index Terms—Fractional Brownian motion, fractional Wiener
integrals, infinitely divisible cascades, multifractal random walks,
multifractals, scaling properties.

I. INTRODUCTION

R ANDOM multifractal measures and processes (or simply,
multifractals) have been used to model natural and man-

made phenomena in a variety of fields, ranging from turbu-
lence in hydrodynamics, DNA sequences in genetics, rainfall
in geophysics, to stock prices in finance, teletraffic in the In-
ternet. Multifractals are described in at least two complemen-
tary ways. On one hand, the so-called multifractal spectrum
functions are used to describe (e.g., Hausdorff) dimensions of
singularity exponents of multifractals. On the other hand, the
so-called partition functions are used to describe scaling proper-
ties of moments of multifractals. Multifractal formalism allows
one to relate the two approaches (or the two sets of functions)
through the Legendre transformation. See, for example, a review
article by Riedi [1] and references therein for more information
on multifractals.

Much of the initial effort to construct random multifractals
was directed to multifractal random measures which are non-
negative. Examples are the celebrated multiplicative (binomial)
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cascades of Mandelbrot [2], Kahane and Peyriere [3] or their
more recent generalizations to compound Poisson cascades of
Barral and Mandelbrot [4], to (log-)infinitely divisible mul-
tifractal measures of Bacry and Muzy [5], [6], Schmitt and
Marsan [7], Schmitt [8], and to non-scale-invariant infinitely
divisible cascades of Chainais, Riedi, and Abry [9], [10].
See also Mannersalo, Norros, and Riedi [11], Schertzer and
Lovejoy [12] for other constructions of multifractals. In many
applications of multifractals, however, we need multifractal
processes that take both positive and negative values, and that
have stationary increments. Several models of multifractal
processes were proposed to address this need.

A common way (see, for example, Mandelbrot [13]) to con-
struct a multifractal process is through

(1)

where is a multifractal random measure and is a self-sim-
ilar process with stationary increments, independent of . For
more information on self-similar processes, see, for example,
Samorodnitsky and Taqqu [14, Sec. 7], Embrechts and Mae-
jima [15]. A typical choice for is fractional Brownian motion
(fBm) , , which is the only Gaussian -self-sim-
ilar process with stationary increments. In this case, the multi-
fractal process (1) is also known as fBm in multifractal time,
following Mandelbrot’s terminology (cf. Mandelbrot [13]). An
advantage of working with processes (1) is that their multifractal
properties are easy to deduce from those of and .

Another suggested way to construct a multifractal process is
through stochastic integration as

(2)

where is a suitable stationary nonnegative multifractal noise
(for example, such as in Barral and Mandelbrot [4]) and is as
in (1), independent of . Multifractal processes (2) are generally
known as multifractal random walks (MRWs, in short). The case
of Brownian motion (Bm) was studied and is quite easy
to deal with because (2) is conditionally (on ) Gaussian and
the moments of can be expressed as

(3)

where stands for the mathematical expectation (see, for ex-
ample, Bacry and Muzy [6, p. 460]). Basic interests in intro-
ducing (2) are that their multifractal properties are generally dif-
ferent from those of (1) (thus contributing to the collection of
available multifractal models), that their generating structure is
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quite different from (1) (thus offering potential alternative gen-
erating schemes of multifractal processes) and that their sample
paths appear visually different from (1). In particular, regarding
their generating structures, can be thought as determining
instantaneous variance of a random system (2). Since is
a multifractal noise, the variability fluctuates with bursts of ac-
tivity associated with high values of . On the other hand,
the activity of a random system (1) is thought to be governed by
a multifractal time . Sudden increases in are now as-
sociated with faster activity of the system (1). (See also Figs. 3
and 4 later, and Section IV-F.)

In this work, we study processes (2) with fBm
and refer to them as MRWs with s fractional Wiener integrals
or simply MRWs if there is no confusion. The case of fBm is
much more complex than that of Bm because fractional Wiener
integrals (integrals of deterministic functions with respect to
fBm, as in (2) conditional on ) are more involved than usual
Wiener integrals. These integrals, especially when integrands
are random, have been studied in depth only recently (see Car-
mona, Coutin, and Montseny [16], Decreusfond and Üstünel
[17], Gripenberg and Norros [18], Pipiras and Taqqu [19]). We
suppose that in (2) is an infinitely divisible cascading (IDC)
noise or simply an infinitely divisible cascade as introduced in
Muzy and Bacry [5], Chainais et al. [9]. This appears to be the
most general class of stationary multifractal noise processes up
to date.

When working with fractional integrals, it is convenient to
use a different parametrization for fBm. We set

(4)

and write . Observe that the values , , and
of are now associated with the values , ,

and of .
The IDC noise is viewed as a limit of a family of processes

when and is characterized by a function (cf.
Section II-A for more details). MRW is defined as fractional
Wiener integral with (cf. (43)).

MRWs as fractional Wiener integrals are first discussed in
passing by Muzy and Bacry [5], Bacry, Delour, and Muzy [20].
More recently, they are studied in greater depth by Ludeña [21]
where they are called Multifractal Fractional Random Walks.
Despite some overlap, the focus of this work is quite different
from Ludeña [21]. First, we take a closer look at the definition
of MRWs. These objects were defined in previous works when

(5)

where is the function mentioned above and is a constant
entering the construction of an IDC noise. (Since , (5)
implicitly assumes that and .) We study here
also the case when (5) does not hold, that is

(6)

for both and . We suggest that, in case (6), a suit-
able normalization should be used for (2) with replacing

as . This is supported by proving convergence of mo-
ments for the expected range of parameters, and by empirical ev-
idence in simulations. Somewhat surprisingly, the inequality (6)
is even simpler to deal with in moment calculations, and scaling
properties of MRWs for essentially correspond to those
of MRWs defined through the usual Bm. Second, we provide
natural conditions on finiteness of (even order ) moments of
MRWs, which were conjectured by Ludeña [21], namely

(7)

under the condition (5). This is achieved through a direct ap-
proach (covering both (5) and (6) for ) whereas Ludeña
[21] used power counting methods leading to stronger condi-
tions. Third, we illustrate a number of our results (such as con-
vergence, scaling properties) through numerical simulations. In
particular, this explores the practical relevance of some theoret-
ical results that are asymptotic in nature, and raises other ques-
tions such as oversampling in simulation of MRWs. Giving a
proper credit, it should be said, however, that Ludeña [21] ad-
dresses an important question of asymptotic behavior of -vari-
ations of MRWs. This is not the focus in this work.

The rest of the paper is organized as follows. The next section,
Section II, contains some preliminaries on infinitely divisible
cascades and fractional Wiener integrals. Definitions of MRWs
are studied in Section III. Properties of MRWs can be found in
Section IV. The proofs of several auxiliary results are moved to
Section V.

II. PRELIMINARIES

A. Infinitely Divisible Cascading (IDC)Noise

We recall here the definition of IDC noise from Chainais et
al. [9] that will be used for integrands in the definition of (2).

Infinitely Divisible Measure: Let be an infinitely divisible,
independently scattered random measure on

(8)

with the generating infinitely divisible distribution having a
moment generating function

(9)

and the control measure

(10)

on . Independent scatteredness means that random variables
, , are independent whenever Borel

sets are mutually disjoint. Infinite divisibility with the
generating function and the control measure means that the
moment generating function of with Borel set
is given by

(11)
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Infinitely Divisible Noise: By definition, an IDC noise is a
family of processes , , defined by

(12)

where

(13)

is a cone in . For each , the process , , is
stationary. We also let

(14)

which will be used in the proof of one of the main results, and
set

(15)

Note that and is concave. Moreover,
The trivial case (yielding ) is excluded

throughout.
Examples of underlying distributions are Gaussian, stable,

gamma, compound Poisson laws. Several useful formulas re-
garding IDC noise are

(16)

(17)

where

(18)

(Relation (17) implicitly assumes that exists. This may not
be the case for some underlying distributions such as most of
stable distributions.) More generally, as in Lemma 1 of Bacry
and Muzy [6, p. 457], one has, for

(19)

where

(20)

Since is a concave function, one has .
Scale Invariance and Infinitely Divisible Noise: Throughout

this work, we consider only those infinitely divisible noises
whose control measure is given by either

if
if

(21)

or

if

if
(22)

where is a constant and denotes a point mass
at . With this choice, we follow Muzy and Bacry [5], [6],
Chainais et al. [9], [10]. The measures (21)–(22) are such that

behaves as when (cf. (102)–(103)), and are
expected to lead to processes with truly multifractal properties.

The cases (21)–(22) are known as those of scale invariance. The
case (22), considered in Bacry and Muzy [5], [6], is also referred
to as that of exact scale invariance.

In the case of exact scale invariance, in particular, for

(23)

where stands for the equality of finite-dimensional distri-
butions and is a random variable which is independent of

and has the moment generating function

(24)

where is given by (15). In the scale invariant case (21),
using the notation (14), for

(25)

Again, only the cases (21)–(22) are considered in this work,
and we will generally make no further reference to this, unless
the focus is specifically on (21) or (22).

Multifractal Infinitely Divisible Motion: A truly multifractal
process, called IDC motion in Chainais et al. [9, p. 1068], is
obtained by integrating over and letting , namely

(26)

We shall substitute into the integral (2) for and also let
. Note that the limit is outside the integral sign in (26).

In fact, the limiting object is trivial: it converges
to almost surely and for almost all (see Chainais et al. [9,
Sec. III.A]). The limiting integral (26), on the other hand, is
nondegenerate under suitable (and mild) assumptions. In case
of scale invariant cascades, the corresponding assumption is

(27)

where

(28)

or since and assuming is smooth

(29)

(see Barral and Mandelbrot [4], Bacry and Muzy [6]).

B. Fractional Wiener Integrals

We recall here several known facts on fractional Wiener inte-
grals that will be used in the paper, where ,

, is fBm, is a deterministic function, and
is fixed. Most of the facts below are taken from a review

article by Pipiras and Taqqu [22]. We also exclude below the
case for which fractional Wiener integral is well known
to be defined when .

When , several classes of integrands are avail-
able for fractional Wiener integrals. One such class is defined as

(30)
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It can be shown to be an inner product space with the inner
product

(31)

where is a constant. (The inner product space is known
to be incomplete.)

When , the commonly used class of integrands
is defined as

(32)

It can be shown to be a Hilbert space with the inner product

(33)

where, for

(34)

is a fractional integral of order and, for

(35)
is a fractional derivative of order (or fractional integral of
negative order ).

For , a fractional Wiener integral, denoted as

(36)

is defined in the usual way as the -limit of in-
tegrals for elementary functions such that

. (An elementary function has
a form and its fractional Wiener
integral is defined as .)
By definition, , , are Gaussian random variables
with the covariance structure

(37)

Fractional derivatives and hence the case are
generally more difficult to deal with. The following formula,
however, often facilitates computations even in the case

. For “nice” functions and

(38)

“Nice” means here, for example, step or functions.
Observe that, unlike (35), the relation (38) does not involve
derivatives. Another instance where the relation (38) holds is
the following.

Lemma 2.1: Let and be such that
, where

(39)

where . Then, is well defined, given by
(38), and belongs to

Proof: For consider

(40)

Then belongs to and converges to in
Moreover

These observations and the Fubini’s theorem (for the second
equality below) allow us to conclude that

This implies that is well defined and equals .

Corollary 2.1: For if and if
, where

(41)

then belongs to and

(42)

C. Fractional Wiener Integrals of IDC Noise

In Section III, we shall consider MRWs as the limits of frac-
tional Wiener integrals

(43)

as , where is an IDC noise defined in Section II-A
and is fBm. Using the preliminaries of Sections II-A and
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II-B, we state here that (43) is well defined for each fixed .
See Section V for a proof.

Proposition 2.1: For , a.s. for each
fixed and, hence, fractional Wiener integral (43) is well
defined a.s. for each .

D. Important Notation and Cases

Throughout this work, we consider only the case of scale in-
variance (21) or (22). It is convenient to introduce the following
notation and cases. Let

(44)

Consider the cases

(45)

(46)

(47)

(48)

where the notation , , and stand for “Above,” “Equal
to,” and “Below” the critical value , respectively, while
indicates “Negative” for . Let also

when
when or or

(49)

where

(50)

The function will play the role of scaling exponents. The
cases and will be refined below.

III. MRW: DEFINITION, CONVERGENCE, AND

NUMERICAL SYNTHESIS

We wish to define Multifractal Random Walk (MRW) as
the limit of fractional integrals in (43), as . The
following section, Section III-A, contains some preliminary
technical results. Various types of convergence are considered
in Section III-B, and numerical synthesis is discussed in Sec-
tion III-C. Most of stated results of this section are proved in
Section V.

A. Calculations of Even-Order Moments

The following technical result concerns even-order moments
of when .

Proposition 3.1: Suppose is such that

(51)

where is defined in (49). Then, for fixed , as

(52)

where

when
when
when

(53)

and is a nonzero constant which depends on and also
on and .

Note that in (53) diverges as in cases and
. The case is much more cumbersome, and

only the case of (second moment) is considered.

Proposition 3.2: In case , for fixed , as

(54)

where is a nonzero constant which depends on and also
on and .

The relations (52) and (54) above suggest that may need
to be normalized for convergence when or .
Hence, let also

(55)

where is defined in (53) and (54).

B. Various Types of Convergence

We discuss here several types of convergence of the process
defined in (55).

1) Convergence of Moments: Possibly the weakest type of
convergence is that of (absolute) moments. Let be a subset
of . We say that the moments of converge to those of
(the moments of converge, respectively), if

for ( converge for , respec-
tively). Though the moment convergence is weak, it is quite ap-
propriate for multifractals where their scaling properties are de-
fined in terms of absolute moments.

Proposition 3.1 can now be restated as follows, and requires
no separate proof.

Theorem 3.1: In cases , , and , the moments
of converge, where

(56)

and is defined by (49).

Remark 3.1: The convergence of moments in Theorem 3.1
can be extended to that of linear combinations of finite-dimen-
sional distributions of , that is, ,

, .
In case , by Proposition 3.2, the second moment of

converges by construction. We conjecture that all moments
specified in Theorem 3.1 also converge.

2) Convergence in : Another useful type of convergence
is that in . In this regard, the following result is useful.

Lemma 3.1: For , we have
, where is defined by (43).

Authorized licensed use limited to: Pierre Chainais. Downloaded on December 7, 2009 at 02:50 from IEEE Xplore.  Restrictions apply. 



3830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST 2009

Propositions 3.1 and 3.2, and Lemma 3.1 above lead to the
following result.

Theorem 3.2: For fixed , converges in in
case , and does not converge in in cases , ,
and .

Proof: In case , we have . Observe by
Lemma 3.1 that, for

(57)

Hence, there is convergence in if and only if
converges. This happens under by Proposition 3.1.

For the last statement of the theorem, consider, for example,
the case with . Then, by Lemma 3.1, for

(58)

By Proposition 3.1, , converge
to the same nonzero constant as . But can be
taken such that , showing that does not
converge in .

Remark 3.2: In case when there is convergence in ,
one may be inclined to write and to define the limit MRW as

. This is impossible because is not de-
fined as a regular process. (See also the discussion following
(26).) On the other hand, one could still expect that the limit

is characterized by the IDC motion
defined in (26). In fact, Ludeña [21] defines the limit as being
conditionally Gaussian with the covariance structure

(59)

The appearance of this covariance structure suggests that the
above integral is well defined (a.s.) for IDC motion . Since

blows up at , this obviously imposes smooth-
ness conditions on the motion . A closer look at the argument
of Ludeña [21] shows that (59) is understood as the limit of

as . Whether it can
be interpreted through itself is an open question.

Remark 3.3: Observe that convergence in for MRWs
(case ) implies the condition (29) for nondegeneracy of IDC
motion. Indeed, in case , one has ,

, and concave . Assuming smooth-
ness of , the latter conditions can happen only when .
But and
hence , that is, (29) holds. We do not believe this
argument could be reversed in general.

Remark 3.4: -convergence and nonconvergence in
Theorem 3.2 can also be viewed from the following interesting

angle. For example, when , if
converged, one would have that

as . Completeness of would imply that
converges to a regular process in .

But this would not be possible since is expected
highly irregular as . The same argument could also be
applied when for which the integrand space of fBm is
complete but not for when there is no completeness (see
Section II-B). These arguments suggest that nonconvergence in
Theorem 3.2 is, in fact, expected when , and that conver-
gence in can only happen when .

3) Convergence in Distribution: Another type of conver-
gence in a weaker sense is that in distribution. In fact, conver-
gence of in distribution takes place when . (When

, there is no convergence in .) To see this in the
scale invariant case (21), observe that

(60)

where we used the fact that . Here,
is another IDC noise characterized by and

. The convergence in distribution of (60) is shown
in Bacry and Muzy [6, p. 473]. The convergence takes place also
in distribution in the space of functions.

We conjecture that the convergence in distribution also takes
place in cases , , and . This is supported by the con-
vergence of moments discussed in Section III-B.1, and by the
following numerical simulations. See Section III-C below for
more details on numerical synthesis.

Fig. 1 shows histograms of for ranging from
to , respectively, in the case (case ),

(case ), and (case ). Each his-
togram results from 40 000 realizations of for underlying
compound Poisson cascades such that and

. Therefore, the critical situation corresponds to the choice
. In all cases, the histograms obtained

for various resolutions superimpose quite clearly, and support
the conjecture of convergence in distribution.

4) Finer Convergence Results in Case (A): In case , finer
convergence than that in can be established.
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Theorem 3.3: Consider the case . Then, as , the
sequence of processes converges a.s. (and hence
in distribution) in the space of continuous functions .

5) Convergence in and Refinement of Earlier Cases: Var-
ious types of convergence above can be complemented by that
in , . We suppose and consider
only the case of exact scale invariance (22) for simplicity. For

, let

(61)

Note that in (49) and the function coincide in case
and are different in cases and .

Theorem 3.4: Consider the case of exact scale invariance (22)
and . Suppose there is such that

(62)

Then, for all

(63)

In particular, for all , converges a.s. and in
as .

Here is where Theorem 3.4 fits in with previous results. In
case , by Theorem 3.2, there is convergence in and
hence that in for all . Convergence almost
surely is also proved in Theorem 3.3. Hence, in this case, The-
orem 3.4 does not yield any new results. On the other hand, new
results emerge in cases and . Two cases should now be
distinguished.

Case 1: ,
Case 2: ,

where indicates the derivative of , and is defined
in (61).

In cases and , is concave
and such that , , and

. Moreover, is also
concave and such that , , ,
and . In Case 1, note that . Then,
by concavity, one expects that even for some ,
and that condition (62) does not hold for any . This
corresponds to the situation considered in Proposition 3.1 and
Theorem 3.1.

On the other hand, in Case 2, by concavity, one expects that
condition (62) might hold for some . (In particular,
in case , one expects this condition to hold for sufficiently
close to .) In this case, by Theorem 3.4, there is convergence
almost surely and in without any normalization. Note
also that, if condition (62) holds for some , one cannot
expect that for . Indeed, supposing
for some yields . Using concavity of
and , one expects that for .

In order to distinguish between above Cases 1 and 2, we shall
use the following notation. Cases and will refer to the

earlier cases and when . When ,
cases and will be denoted as

and

respectively. In cases and , we set .
From a practical perspective, cases and appear to

be more relevant than cases and . First, most known
examples of IDC noise, in fact, fall into cases and .
Second, in cases and , one expects the limit
of to have infinite second moment. For these reasons, in
simulations and Section IV below, we shall focus on cases
and , rather than cases and .

6) Summary of Convergence: In Table I, we summarize the
convergence results for . We will refer to the limit by the
following name.

Definition 3.1: The limit process of will be called
Multifractal Random Walk (MRW) as fractional Wiener integral
or simply MRW, whenever it exists.

7) Using Arbitrary Powers of IDC Noise: It is interesting to
compare the above definitions of MRWs to those when consid-
ering integrals

(64)

where the IDC noise has a power . When ,
integrals (64) and their limits appear, for example, in Bacry and
Muzy [6], Ludeña [21]. As already hinted in Section III-B.3,
the case of integrals (64) can be reduced to that of integrals (43)
considered above. We state this as an elementary result next.

Proposition 3.3: For , we have

(65)

where and in the cases (21) and (22),
respectively, is an IDC noise characterized by the same con-
trol measure , and

(66)

Proof: Observe that

where is an infinitely divisible measure char-
acterized by
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Fig. 1. Histograms of �� ��� for various resolutions � ranging from ������ to ���. First row: histograms for (a) � � ���� � � � � , (b) � � � � ���	 � � ,
(c) � � � � ���. Second row: log-histograms for (d) � � ���� � � � � , (e) � � � � ���	 � � , (f) � � � � ���.

TABLE I
CONVERGENCE OF � IN THE SCALE INVARIANT CASE

and hence and
.

As a consequence of Proposition 3.3 and Theorem 3.2, for
example,

converges in when

In case , this happens when . A discussion
related to this section can also be found in Section IV-F below.

C. Numerical Synthesis

The process in (43) is synthesized numerically as fol-
lows. To produce samples , , at

equally spaced times on the interval , we generate
equally spaced samples and ,

, of fBm and IDC noise . The integer con-
stant is referred to as the oversampling factor. Continuous
sums in (43) are then approximated using Riemann sums

(67)

The samples of fBm are synthesized numerically
using the so-called circulant matrix embedding method. This is
not detailed here and the reader is referred, e.g., to Bardet et al.
[23] for a complete introduction.

The synthesis of an IDC noise first requires the choices of
theoretical quantities: an infinitely divisible measure in (9)
with its control measure (10); the triangle-shaped cone in (13).
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Fig. 2. A sample path of an IDC noise (CPC) � .

Fig. 3. Sample paths of MRW. Sample path of � (blue-gray) together with that of� (black) from which it is obtained by combination with the sample path of
� shown in Fig. 2. From left to right: � � � � � , � � � � � , � � � � �.

In practice, the resolution parameter in needs to be chosen
such that . The samples are generated using
the algorithms thoroughly described in Chainais et al. [9] and
not recalled here.

Examples of sample paths of are produced using a specific
type of IDC noise referred to as compound Poisson cascades
(CPC). The same sample path of the CPC , shown in Fig. 2,
is used to produce the sample paths of for the three different
cases, , , and , cf. Fig. 3. For
illustration purposes, Fig. 4 compares the sample paths of MRW

against those of the so-called fBm in multifractal time

(68)

where is the IDC motion in (26), obtained using the same
sample paths of and . For definitions of fBm in mul-
tifractal time, the reader is referred to Mandelbrot [13], Riedi
[1]. It is analyzed in Chainais et al. [9] and Bacry and Muzy [5],
[6]. Note also that, thanks to Riemann sums (67), the numerical

synthesis of MRWs is much easier than that of fBm in multi-
fractal time, which is based on resampling of fBm.

IV. PROPERTIES OF MRWS

We examine here several properties of MRWs. Since no type
of convergence was established in case in Section III-B,
this case will be excluded from theoretical results below.

A. Stationary Increments and Long Range Dependence

In case , MRW has strictly stationary increments be-
cause is stationary and has stationary increments.
The time series

for some , of the increments of MRW is therefore sta-
tionary. Similarly, in cases and , MRW has second-
order stationary increments and the series is second-order
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Fig. 4. Superimposition of MRW and fBm in multifractal time. Using the sample paths of� shown in Fig. 2, superimpositions of the sample paths of� (black),
� (blue-gray), � (red-light gray). From left to right: � � � � � , � � � � � , � � � � �.

stationary. The following result contains basic properties of
and . See Section V for a proof.

Proposition 4.1:
(i) In case , has zero mean and the covariance structure

(69)

where is understood formally through (17),
(102) and (103) by substituting . In particular, for

, one has

(70)

as .
(ii) In cases and , has the covariance

for (71)

In particular, , for . For example, in case
(22), the constant in (71) is given by

(72)

Time series with the autocovariance function satisfying
(70) with as is known as long range
dependent. Thus, according to Proposition 4.1, is character-
ized only by two regimes at large scales: its increments are long
range dependent for while it has uncorrelated
increments for .

B. Finiteness of Moments

The following result characterizes finiteness of even-order
moments of MRWs.

Proposition 4.2: Let . In cases , , and , the
th moment is finite when

(73)

where is defined in (49).

The function plays the role of scaling exponents below.
The condition (73) is therefore a natural and expected condi-
tion on finiteness of moments in the multifractal literature. In
case , the condition (73) was conjectured by Ludeña [21].

C. The Special Case of Exact Scale Invariance

The case of exact scale invariance (22) is special in the sense
that the corresponding MRW has the following scaling property.

Proposition 4.3: In the case of exact scale invariance, we
have, for

(74)

in case with denoting the equality in the sense of finite-
dimensional distributions, and

(75)

in cases and , with denoting the equality of even-
order moments (from the set (56)) of linear combinations of fi-
nite-dimensional distributions. In (74) and (75), is a random
variable independent of and with the moment
generating function (24).

Proof: In case , observe from (23) and –self-
similarity of fBm that

(76)

The result (74) follows by letting .
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In case , we have

(77)

The result (75) follows from Proposition 3.1 by letting .
The same relation can be deduced similarly in case .

The relation (74) differs from the usual self-similarity in the
presence of random variables . Proposition 4.3 above di-
rectly yields the scaling behavior of moments of MRWs (see
Section IV-D.1).

D. Scaling Properties of Moments of MRWs

We study here the scaling properties of moments of MRW
. These concern the asymptotic behavior of the moments

as .
1) The Case of Exact Scale Invariance: A particularly easy

case is that of exact scale invariance (22). Taking and
in (74), yields

in case . In cases and , relation (75) yields

for even-order moments . Combining the two relations gives
the following result.

Theorem 4.1: In the case of exact scale invariance (22) and
, , and , we have, for

(78)

where is defined in (49), and is such that
.

The condition holds for all even in
defined by (56). Note also that, in cases and , scaling

exponents depend only on , not .

Remark 4.1: In case , note that (78) implies, in particular,
as . On the other hand, as

, it follows from (69) that The
second moment thus scales differently at small and large scales.
Note also that this is expected since small scales are influenced
by while larger scales are dominated by fBm.

2) The Case of Non-Exact Scale Invariance: In the case of
non-exact scale invariance (21), the moments of MRW do not
scale exactly. However, the scaling (78) is expected as .
We provide here such a result adapting the approach in Theorem
1 of Chainais et al. [9, p. 1069], which concerns the scaling
properties of IDC motion. (Another possibility is to follow the

approach used for Lemma 4 in Bacry and Muzy [6].) Recall
the notation defined in (14), and let be fixed. For

, and , let also

(79)

Theorem 4.2: Suppose and consider the case
of scale invariance (21). Let be fixed. Suppose that, for

as (80)

and that, for and

(81)

with . Then, for and some constants ,

(82)

where is defined in (49).

See Section V for a proof of the theorem. In regard to the
assumption (81), observe that, by the Hölder’s inequality and
the inequality ,

(83)

Hence

(84)

The functions are used in Chainais et al. [9] in the as-
sumption similar to the assumption (81). Sufficient conditions
for these functions to be bounded by the function , ,
are provided (see Corollary 2 in Chainais et al. [9]).
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Fig. 5. Scaling exponents from increments. For � � ���� � �, � � � � ���� � � , and � � � � � � ��� (from left to right), dashed lines: theoretical
scaling exponents; solid points: scaling exponents estimated using increment based structure functions; for � � ��� � �. The agreement is very satisfactory when
� � �. The case � � � is more difficult, requiring the use of higher oversampling rate �, and hence higher practical difficulties (computational cost and memory
issues).

Remark 4.2: When (cases and ),
the scaling behavior of MRWs is the same according to The-
orems 4.1 and 4.2. In particular, from a practical perspective,
this suggests that the MRW with could be used to
capture the corresponding scaling behavior. The case is
obviously simpler than that of .

Remark 4.3: As in Chainais et al. [9], Theorem 4.2 can be
reformulated for control measures that are more general than
in (21). In this case, the term in (82) gets replaced by

, where is defined in (50).

E. Numerical Illustrations

We now intend to illustrate practically the scaling behaviors
reported in (78) and (82). These power law behaviors of
translate into those of its stationary increments as

(85)

for , such that , where is an arbi-
trary constant, and is an analysis scale such that .
The scaling exponents are given in (49). To reproduce such
behaviors from a single realization of , one usually re-
places the ensemble averages with time averages, called struc-
ture functions,

where is the number of such increments available at scale
. The estimator of the scaling exponent is obtained

by performing a weighted linear regression in a against
diagram. This procedure is fully defined in, for

example, Lashermes et al. [24].
However, it is of importance to mention that, as now com-

monly agreed, the time averages reproduce the power
law behaviors , implied by (85) above,
only over a finite range of , where is defined as
the value of such that . This is
detailed in Lashermes et al. [24].

Fig. 5 shows the mean values of the estimates for
obtained from averages over 500 realizations of sample

paths of (with and ). As earlier, we take
. Results illustrated in Fig. 5 clearly indicate that the

estimated scaling exponents are in fairly satisfactory agree-
ment with the predicted values when (case

) and (case ). They also show that this agree-
ment is less satisfactory when (case ). However,
the agreement tends to improve when the oversampling rate
is increased, at the price, though, of a significant increase in the
computational cost and computer memory issues. This clearly
indicates that the use of Riemann sums to approximate the con-
tinuous sum defining is less efficient when (compared
to when ).

The numerical analysis described above can be straightfor-
wardly extended to structure functions obtained by re-
placing increments at scale by wavelet leaders. Wavelet
leaders are defined as local suprema of the discrete wavelet
transform coefficients of (see Jaffard et al. [25], [26] for
definitions, implementations, and performance). Such structure
functions can be computed both for positive and negative values
of , where and are the negative and positive
zeros of . For multifractal processes,
the structure functions exhibit power law behaviors
in the limit of fine scales and a Le-
gendre transform of provides a tight upper bound of the
multifractal spectrum of the analyzed process:

(cf. Jaffard [25]). The are esti-
mated via a weighted linear fit as above.

Results (cf. Fig. 6) obtained from 500 realizations of (with
and ) show a very satisfactory agreements be-

tween the estimated scaling exponents and the theoretical
exponents given in (49) over the full range ,
i.e., including positive and negative values of , when

(case ) and (case ). For the case
(case ), a discrepancy is visible, indicating the requirement
to use higher oversampling factors.

F. MRW Versus Subordinated FBM

In this closing subsection, we compare MRW and fBm
in multifractal time as defined in (68). We are interested in
whether these processes can have the same scaling exponents
and, more generally, the same finite-dimensional distributions.
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Fig. 6. Scaling exponents from wavelet leaders. For � � ���� � �, � � � � ���� � � , and � � � � � � ��� (from left to right), dashed lines: theoretical
scaling exponents; solid points: scaling exponents estimated using wavelet leader based structure functions; for � � �� � � �. The agreement is very satisfactory
when � � � for both positive and negative � while slightly less when � � �.

The answer turns out to depend on whether the processes
and are defined using the following.

Case 1: the same parameter and function ;
Case 2: the same function but different ;
Case 3: the same but different functions ;
Case 4: different parameters and functions .

In Cases 1, 2, and 3, and essentially have different
scaling exponents, and hence different finite-dimensional dis-
tributions. In Case 4, these processes can have the same scaling
exponents. Whether their finite-dimensional distributions are
the same is a more challenging issue and will be explored
elsewhere. Below is a more detailed treatment of these cases.

Case 1: In this case, the scaling exponents of MRW and
fBm in multifractal time are

(86)

where is defined in (50). When , the scaling exponents
are clearly different. When , the same conclusion
can be drawn under a mild assumption of twice differentiability
of at . Indeed, if , then

and have to be equal, which
leads to contradiction. If the scaling exponents are different, the
corresponding finite-dimensional distributions are different as
well.

Case 2: This case can be dealt with in the same way as Case 1
assuming twice differentiability of at .

Case 3: In this case, the corresponding scaling exponents are

(87)

where , . A particular
class of functions are

(88)

for some , which are transformations arising in (66). To
understand whether the equality of and is possible, sev-
eral subcases need to be considered.

• If , then and to have ,
we need . This is not possible

given basic properties of , ( ,
concavity).

• If , on the other hand, then and
becomes

(89)

This yields, in particular

(90)

If are the scaling exponents (28) of
the IDC motion, the equality (90) implies that

(91)

If , the relation (91) shows that
for some . By concavity, one expects that

and this situation corresponds to the case
when the IDC motion and hence fBm in multifractal time
are degenerate (Bacry and Muzy [6]).
If , (91) means that for some

. This corresponds to another unusual situation,
when the IDC motion is expected to have infinite variance.
When , no such conclusion can be drawn. In fact,
when , (89) is

(92)

or, after noticing that

(93)

which is the transformation (88) with . This choice
corresponds to using and as a power in the
definition (64) for MRW. As discussed in Section III-B.3,
the resulting MRW and fBm in multifractal time have the
same finite-dimensional distributions.
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Case 4: In this case, the corresponding scaling exponents are

(94)

where , . The equality of
scaling exponents, in fact, is possible here even in the case when

, that is, . Indeed, from a theoretical
standpoint, it is just enough to take

(95)

(96)

The following example illustrates that the choice (95)–(96) is
legitimate even in the class of log-normal cascades.

Example 4.1: Consider log-normal IDC noises with

(97)

After elementary calculations, the choice (95)–(96) translates
into

(98)

where we set as usual. Note that using (98), the
condition is equivalent to

(99)

given that . On the other hand, if at least two mo-
ments are expected finite for the corresponding IDC motion, it
is required (Bacry and Muzy [6]) that

(100)

The latter condition implies (99). Finally, note similarly that
is equivalent to

(101)

which is even weaker than (99).

Though the choice (95)–(96) yields the same scaling ex-
ponents, we expect that the corresponding finite-dimensional
distributions of the processes are different. Showing this here,
however, would take us beyond the scope of the paper. Just to
indicate some of the difficulties, note that the equality of scaling
exponents for and stationarity of the increments implies
that the two processes have the same second-order properties.
In order to show that their finite-dimensional distributions are
different, higher order properties at several time points (for
example, where is either MRW or fBm in
multifractal time) need to be considered. The latter properties
go beyond typical multifractal analysis, and will be studied
elsewhere.

V. PROOFS OF AUXILIARY RESULTS

Throughout this section, we shall use the following expres-
sions for the function defined in (18). In the cases (21)
and (22), one has

if
if
if

(102)

if
if
if

(103)

respectively.

Proof of Proposition 2.1: Suppose for simplicity that
. For , since is nonnegative, it is enough

to show that . This
follows from for all ,
using (17) and (102), (103). For , using Corollary
2.1, it is enough to show that and , where

(104)

(105)

The case of is immediate since and
. For , by the generalized Minkowski’s inequality,

it is enough to show that and , where

(106)

(107)

with

(108)

and defined in (18). Then, after a change of variables
, write as

(109)

where

(110)
We have if and , where

(111)

(112)

Authorized licensed use limited to: Pierre Chainais. Downloaded on December 7, 2009 at 02:50 from IEEE Xplore.  Restrictions apply. 



ABRY et al.: MULTIFRACTAL RANDOM WALKS AS FRACTIONAL WIENER INTEGRALS 3839

Finiteness of follows from and
, as . Finiteness of follows

from (102), (103) by observing that
. This shows that . The finiteness of can

be proved in a similar way.

In the proof of Proposition 3.1 below, we shall use the fol-
lowing notation and facts. Let consist of collections of pairs

such that , and

for two pairs and from the same collection, and

For example, consists of , and consists of
, , . Let also

consists of all pairs with
and indicating a pair containing .

For example, consists of . We
shall also regularly use the fact that

(113)

where is defined in (20) (see also (21) in Bacry and Muzy
[6]).

Proof of Proposition 3.1: We suppose for simplicity that
and consider only the case of exact scale invariance (22).

(It is clear from the proof below that the arguments can also be
adapted to the case (21).) Observe that, by conditioning on
and using (37) and (31)

(Here and below, will denote a generic constant that may
change from line to line.) By using (19), we further obtain (with
the notation above) that

(114)

Note that, after a change of variables , ,
, we also have

(115)

where the inequality above is due to dropping the restrictions
, . We will show that

(116)

where is given by (53). Since increases as
in view of (115), this immediately yields (52) in case .

In cases and , similar arguments to those below would
show that the rate of increase of the difference between
and is slower than . Moreover, only the case

will be considered. We prove (116) for cases and
separately.

Case (A): Since for all , it is
enough to show that , where

(117)

and is any fixed collection of pairs from . This will
be achieved through induction in and we shall also use
for odd powers defined by (117) but where .

When , which is finite since
in case . Suppose ,

, and consider the case of . (Note that, since
is concave, and
imply for .) Denote

by , , the integral restricted to the set
, all . It is then enough to show that

(118)

We need to consider the cases and separately.
Consider first the case of even . Then, making a change

of variables , , , and using the fact
(113), we obtain that

(119)

where by convention in the last multiple integral. Since
, we further have
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(120)

where is a collection of pairs from and
is a collection of pairs from . These collections may
not be defined uniquely and can be chosen only to make a con-
venient bound. For example, in the case ,

, and , in (119) is

(121)

which is bounded in the argument above as

(122)

(Note throughout that and .) Hence

which is bounded by induction, and since . The case
of odd can be considered similarly and involves the
integral

This integral is finite since

Case (B): We will show that , where

(123)

This is one of the terms in (115) with
. We will argue that the terms

in (115) with other have slower rate of growth
than .

Let be the integral restricted to
. We will show first that

and then argue that the same happens with . Observe that

(124)

Making a change of variables , ,
, , we obtain that

(125)

where by convention. Then, by dominated conver-
gence theorem

(126)

as long as (recall also that ), where

(127)

and

(128)

Showing that can be done by induction in , similarly
to and easier than in case above, if

Observe that

Hence, the condition above becomes

Since and is concave, these condi-
tions just follow from .

The integral restricted to other regions than that in
can be dealt with in a similar way. For example, the

integral over , and
can be dealt with in exactly

the same way as , and has the rate of growth .
The integral over , and

has the rate of growth
because of the restriction .

Finally, consider the terms in (115) with other
than . These terms
can be shown to be of the order . The basic idea
is the following. (We will omit further details for shortness
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sake.) For example, such term over , , can
be bounded by

(129)

where , ’s satisfy the assumptions of ’s,
there are different such that , and

. For example, in the case , the integral

(130)

is bounded by

(131)

When is close enough to , , the exponents ,
, have properties of the orig-

inal . Because of the presence of , an argu-
ment similar to that above would show that (129) is of the order

.

Proof of Proposition 3.2: We consider the simpler case of
the exact scale invariance (22), and only . Observe that, by
conditioning on and using (33) and (38)

(132)

where

(133)

To prove (54), we will show that diverges faster than
and , and find the corresponding rate of divergence of .
We first examine and , and then turn to .

The case of is simple. By using (16) and (103), we have

(134)

Turning to , we have

(135)

By using (17) and (103)

(136)

and, since

(137)

and

(138)

Thus, by collecting the above expressions

(139)

By using (17) and (103)

(140)

Here

(141)
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Observe that, with

(142)

Hence, with

Similarly

(143)

Collecting the above results yields

(144)

and the relations (135), (139), and (144) show that

(145)

Consider now the term in (132). Let

if
if .

(146)

By making a change of variables
and using (17) and (103), we have

(147)

so that

(148)

The result (54) follows from (134), (145), and (148), since
.

Proof of Lemma 3.1: In the case

since is a martingale (Lemma 3 in Chainais et al.
[9]). The case can be proved in a similar way
using the expression of the type (132).

Proof of Theorem 3.3: Using Theorem 4.2.3 in Kwapień
and Woyczyński [27], it is enough to show that

(i) is a martingale in ;
(ii) converges in distribution;

(iii) .
The martingale property in (i) is equivalent to

being a martingale for fixed (but with respect to the
same filtration for all ). The proof of (i)–(iii) is given next.

(i) Consider a filtration of -fields given
by ,
where indicates Borel -field. The -field is generated by
smooth variables of the form

where , is a bounded, continuous
function , and . For the mar-
tingale property, it is then enough to show that

for .
Letting be the expectation conditionally on , ob-

serve that is a conditionally
Gaussian vector with the covariance structure consisting, in
particular, of

Using the fact that, for a Gaussian vector with
covariance matrix

this yields that

Using the martingale property of and con-
ditioning on , the last expression is equal to .

(ii) By Proposition 3.1, the collection is
bounded in . Then, since is a martin-
gale by (i), it converges almost surely. The almost sure conver-
gence also implies that of finite-dimensional distributions. For
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the convergence in distribution in the space of continuous func-
tions , since , it is therefore enough
to show (Billingsley [28]) that, for all ,

For this, use the fact for
all , to write

(149)

(iii) For this part, observe that

(150)

Conditionally on , is a Gaussian continuous
process in . By the Borell inequality for continuous Gaussian
processes (Adler [29, p. 43, relation (2.6)]), we have

(151)

where

(152)

Substituting (151) into (150), extending the integra-
tion range to , and making a change of variables

yields

(153)

Since , observe now that

Hence, and substituting this into (153), we
obtain that

(154)

The conclusion follows since by
Proposition 3.1.

Proof of Theorem 3.4: We first show (63) and work with
, for simplicity. Observe that, for

(155)

where

where and
. By a change of variables

and relations (23) and (24), we get that

where is such that and

(156)

Note further that, by stationarity of

(157)

Since is a martingale (see the proof of The-
orem 3.3) and

(158)

On the other hand

(159)

If is such that , we get from (155), (158), and
(159) that

(160)

for all . Since
, Lemma 3 (i), in Bacry and Muzy [6] yields that
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. This and (160) show that,
with as above

(161)

which is (63). The last statement of the theorem follows from
(63) and the fact that is a martingale.

Proof of Proposition 4.1: The relation (69) can be shown
as in the proof of Proposition 3.1. To see (70), observe that, for

and using (69)

(162)

A proof of the relation (71) depends on various cases in-
volving and . For example, consider the case when
and . Then

(163)

where , , and are the integrals restricted to
, , and , respectively. Observe that

The term can be written as

(164)

One can similarly show that

and deal with the other cases of and .

Proof of Proposition 4.2: The result is immediate from the
proof of Proposition 3.1.

Proof of Theorem 4.2: Consider first the case ,
, with . Set

(165)

and

(166)

Observe that, by conditioning on , using (31) and (14),
and making a change of variables

(167)

and similarly

(168)

Then, by using the inequality (69) in Chainais et al. [9] and
independence of and

(169)

and this yields

(170)

where

(171)
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Focusing now on the term , we have as above

(172)

(173)
and

(174)

where

(175)

By continuing this way for ,
, and gathering (170), (174), and similar results for

, we obtain that

(176)

with

In the case (21), by (25), has the same finite-dimen-
sional distributions as and, hence,

. Moreover, using (102).
Together with (176), this yields

The relation (82) for follows by letting and
using the assumptions (80) and (81). This relation for arbitrary

follows from that for by monotonicity.
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